{"title":"用于摩擦阻力测量的气浮元件测力天平","authors":"Xiaohui Wei, Xin Zhang, Jiangang Chen, Yu Zhou","doi":"10.1115/1.4064294","DOIUrl":null,"url":null,"abstract":"\n It is extremely difficult, if not impossible, for existing force balances to capture very small skin-friction drag (SFD) in a perturbed turbulent boundary layer (TBL), which is characterized by the unpredictable, nonuniform distribution of static surface pressure. A novel force balance is proposed, which combines the level principle, as deployed in Cheng et al.'s (2020, “A High-Resolution Floating-Element Force Balance for Friction Drag Measurement,” Meas. Sci. Technol., 32, p. 035301) force balance, with a single-degree-of-freedom air bearing mechanism. This mechanism acts to eliminate disturbances, such as nonuniform static pressure on the wall associated with high Reynolds number TBL or a TBL under control. As a result, the developed balance may be used to accurately measure SFD in the order of 10−3 N in a TBL with or without control. This balance has been successfully applied to measure the drag reduction (DR) of a TBL manipulated using one array of streamwise microjets, at friction Reynolds number Reτ = 3340 ∼ 5480.","PeriodicalId":504378,"journal":{"name":"Journal of Fluids Engineering","volume":"17 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Air-Bearing Floating-Element Force Balance for Friction Drag Measurement\",\"authors\":\"Xiaohui Wei, Xin Zhang, Jiangang Chen, Yu Zhou\",\"doi\":\"10.1115/1.4064294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n It is extremely difficult, if not impossible, for existing force balances to capture very small skin-friction drag (SFD) in a perturbed turbulent boundary layer (TBL), which is characterized by the unpredictable, nonuniform distribution of static surface pressure. A novel force balance is proposed, which combines the level principle, as deployed in Cheng et al.'s (2020, “A High-Resolution Floating-Element Force Balance for Friction Drag Measurement,” Meas. Sci. Technol., 32, p. 035301) force balance, with a single-degree-of-freedom air bearing mechanism. This mechanism acts to eliminate disturbances, such as nonuniform static pressure on the wall associated with high Reynolds number TBL or a TBL under control. As a result, the developed balance may be used to accurately measure SFD in the order of 10−3 N in a TBL with or without control. This balance has been successfully applied to measure the drag reduction (DR) of a TBL manipulated using one array of streamwise microjets, at friction Reynolds number Reτ = 3340 ∼ 5480.\",\"PeriodicalId\":504378,\"journal\":{\"name\":\"Journal of Fluids Engineering\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Air-Bearing Floating-Element Force Balance for Friction Drag Measurement
It is extremely difficult, if not impossible, for existing force balances to capture very small skin-friction drag (SFD) in a perturbed turbulent boundary layer (TBL), which is characterized by the unpredictable, nonuniform distribution of static surface pressure. A novel force balance is proposed, which combines the level principle, as deployed in Cheng et al.'s (2020, “A High-Resolution Floating-Element Force Balance for Friction Drag Measurement,” Meas. Sci. Technol., 32, p. 035301) force balance, with a single-degree-of-freedom air bearing mechanism. This mechanism acts to eliminate disturbances, such as nonuniform static pressure on the wall associated with high Reynolds number TBL or a TBL under control. As a result, the developed balance may be used to accurately measure SFD in the order of 10−3 N in a TBL with or without control. This balance has been successfully applied to measure the drag reduction (DR) of a TBL manipulated using one array of streamwise microjets, at friction Reynolds number Reτ = 3340 ∼ 5480.