类蚊子模型触角周围的翼音特征

IF 1.8 Q3 MECHANICS
Fluids Pub Date : 2024-01-24 DOI:10.3390/fluids9020031
Yongtao Wang, Zhiteng Zhou, Zhuoyu Xie
{"title":"类蚊子模型触角周围的翼音特征","authors":"Yongtao Wang, Zhiteng Zhou, Zhuoyu Xie","doi":"10.3390/fluids9020031","DOIUrl":null,"url":null,"abstract":"Mosquitoes’ self-generated air movements around their antennae, especially at the wing-beat frequency, are crucial for both obstacle avoidance and mating communication. However, the characteristics of these air movements are not well clarified. In this study, the air movements induced by wing tones (sound generated by flapping wings in flight) around the antennae of a mosquito-like model (Culex quinquefasciatus, male) are investigated using the acoustic analogy method. Both the self-generated wing tone and the wing tone reflected from the ground are calculated. Given that the tiny changes in direction and magnitude of air movements can be detected by the mosquito’s antennae, a novel method is introduced to intuitively characterize the air movements induced by the wing tone. The air movements are decomposed into two basic modes (oscillation and revolution). Our results show that, without considering the scattering on the mosquito’s body, the self-generated sound wave of the wing-beat frequency around the antennae mainly induces air oscillation, with the velocity amplitude exceeding the mosquito’s hearing threshold of the male wingbeat frequency by two orders of magnitude. Moreover, when the model is positioned at a distance from the ground greater than approximately two wing lengths, the reflected sound wave at the male wingbeat frequency attenuates below the hearing threshold. That is, the role of reflected wing tone in the mosquito’s obstacle avoidance mechanism appears negligible. Our findings and method may provide insight into how mosquitoes avoid obstacles when their vision is unavailable and inspire the development of collision avoidance systems in micro-aerial vehicles.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the Wing Tone around the Antennae of a Mosquito-like Model\",\"authors\":\"Yongtao Wang, Zhiteng Zhou, Zhuoyu Xie\",\"doi\":\"10.3390/fluids9020031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mosquitoes’ self-generated air movements around their antennae, especially at the wing-beat frequency, are crucial for both obstacle avoidance and mating communication. However, the characteristics of these air movements are not well clarified. In this study, the air movements induced by wing tones (sound generated by flapping wings in flight) around the antennae of a mosquito-like model (Culex quinquefasciatus, male) are investigated using the acoustic analogy method. Both the self-generated wing tone and the wing tone reflected from the ground are calculated. Given that the tiny changes in direction and magnitude of air movements can be detected by the mosquito’s antennae, a novel method is introduced to intuitively characterize the air movements induced by the wing tone. The air movements are decomposed into two basic modes (oscillation and revolution). Our results show that, without considering the scattering on the mosquito’s body, the self-generated sound wave of the wing-beat frequency around the antennae mainly induces air oscillation, with the velocity amplitude exceeding the mosquito’s hearing threshold of the male wingbeat frequency by two orders of magnitude. Moreover, when the model is positioned at a distance from the ground greater than approximately two wing lengths, the reflected sound wave at the male wingbeat frequency attenuates below the hearing threshold. That is, the role of reflected wing tone in the mosquito’s obstacle avoidance mechanism appears negligible. Our findings and method may provide insight into how mosquitoes avoid obstacles when their vision is unavailable and inspire the development of collision avoidance systems in micro-aerial vehicles.\",\"PeriodicalId\":12397,\"journal\":{\"name\":\"Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fluids9020031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids9020031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

蚊子在触角周围自发产生的空气运动,尤其是拍翅频率的空气运动,对于避开障碍物和交配交流至关重要。然而,这些空气运动的特征并不十分明确。本研究采用声学类比法研究了翼音(飞行时拍打翅膀产生的声音)在类蚊(雄性库蚊)触角周围引起的空气运动。计算了自发翼音和从地面反射的翼音。鉴于蚊子的触角可以检测到空气运动方向和幅度的微小变化,因此引入了一种新方法来直观地描述翅音诱发的空气运动。空气运动被分解为两种基本模式(振荡和旋转)。我们的结果表明,在不考虑蚊子身体散射的情况下,蚊子触角周围自发的拍翅频率声波主要诱发空气振荡,其速度振幅超过蚊子对雄性拍翅频率的听阈两个数量级。此外,当模型与地面的距离超过大约两个翅膀长度时,雄性拍翅频率的反射声波会衰减到听阈以下。也就是说,反射翼音在蚊子避障机制中的作用似乎可以忽略不计。我们的发现和方法可以让人们了解蚊子在没有视觉的情况下是如何避开障碍物的,并对微型飞行器避撞系统的开发有所启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of the Wing Tone around the Antennae of a Mosquito-like Model
Mosquitoes’ self-generated air movements around their antennae, especially at the wing-beat frequency, are crucial for both obstacle avoidance and mating communication. However, the characteristics of these air movements are not well clarified. In this study, the air movements induced by wing tones (sound generated by flapping wings in flight) around the antennae of a mosquito-like model (Culex quinquefasciatus, male) are investigated using the acoustic analogy method. Both the self-generated wing tone and the wing tone reflected from the ground are calculated. Given that the tiny changes in direction and magnitude of air movements can be detected by the mosquito’s antennae, a novel method is introduced to intuitively characterize the air movements induced by the wing tone. The air movements are decomposed into two basic modes (oscillation and revolution). Our results show that, without considering the scattering on the mosquito’s body, the self-generated sound wave of the wing-beat frequency around the antennae mainly induces air oscillation, with the velocity amplitude exceeding the mosquito’s hearing threshold of the male wingbeat frequency by two orders of magnitude. Moreover, when the model is positioned at a distance from the ground greater than approximately two wing lengths, the reflected sound wave at the male wingbeat frequency attenuates below the hearing threshold. That is, the role of reflected wing tone in the mosquito’s obstacle avoidance mechanism appears negligible. Our findings and method may provide insight into how mosquitoes avoid obstacles when their vision is unavailable and inspire the development of collision avoidance systems in micro-aerial vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluids
Fluids Engineering-Mechanical Engineering
CiteScore
3.40
自引率
10.50%
发文量
326
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信