Amal S. Hassan, E. A. Elsherpieny, Rokaya E. Mohamed
{"title":"使用基于离群值的 MCMC 方法对应力强度模型进行贝叶斯估计","authors":"Amal S. Hassan, E. A. Elsherpieny, Rokaya E. Mohamed","doi":"10.1007/s40745-023-00512-1","DOIUrl":null,"url":null,"abstract":"<div><p>In reliability literature and engineering applications, stress-strength (SS) models are particularly important. This paper aims to estimate the SS reliability for an inverse Weibull distribution having the same shape parameters but different scale parameters when the strength (<i>X</i>) and stress (<i>Y</i>) random variables are independent. In the presence of outliers and in a homogeneous situation, the maximum likelihood reliability estimator is computed. With independent gamma priors, a Bayesian estimation approach for SS reliability is also proposed. The symmetric and asymmetric loss functions are used to derive the Bayesian estimators of SS reliability. Some sophisticated calculations are carried out using Markov chain Monte Carlo methods. Simulations are used to investigate the precision of Bayesian and non-Bayesian estimates for SS reliability. Further, a comparative study among the Bayesian estimates in the case of uniform and gamma priors is carried out utilizing a simulation methodology. The provided methodology is ultimately applied to the actual data using the discussed model and data from head-neck cancer. According to the results of a study, larger sample sizes resulted in better reliability estimates for both techniques. Generally, as the number of outliers increased, the precision measures from both methods decreased. In all circumstances, the Bayesian estimates under the precautionary loss function outperformed the observed estimates under alternative loss functions. The actual data analysis assured the theoretical and simulated studies.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 1","pages":"23 - 62"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Estimation of Stress Strength Modeling Using MCMC Method Based on Outliers\",\"authors\":\"Amal S. Hassan, E. A. Elsherpieny, Rokaya E. Mohamed\",\"doi\":\"10.1007/s40745-023-00512-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In reliability literature and engineering applications, stress-strength (SS) models are particularly important. This paper aims to estimate the SS reliability for an inverse Weibull distribution having the same shape parameters but different scale parameters when the strength (<i>X</i>) and stress (<i>Y</i>) random variables are independent. In the presence of outliers and in a homogeneous situation, the maximum likelihood reliability estimator is computed. With independent gamma priors, a Bayesian estimation approach for SS reliability is also proposed. The symmetric and asymmetric loss functions are used to derive the Bayesian estimators of SS reliability. Some sophisticated calculations are carried out using Markov chain Monte Carlo methods. Simulations are used to investigate the precision of Bayesian and non-Bayesian estimates for SS reliability. Further, a comparative study among the Bayesian estimates in the case of uniform and gamma priors is carried out utilizing a simulation methodology. The provided methodology is ultimately applied to the actual data using the discussed model and data from head-neck cancer. According to the results of a study, larger sample sizes resulted in better reliability estimates for both techniques. Generally, as the number of outliers increased, the precision measures from both methods decreased. In all circumstances, the Bayesian estimates under the precautionary loss function outperformed the observed estimates under alternative loss functions. The actual data analysis assured the theoretical and simulated studies.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":\"12 1\",\"pages\":\"23 - 62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-023-00512-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00512-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
Bayesian Estimation of Stress Strength Modeling Using MCMC Method Based on Outliers
In reliability literature and engineering applications, stress-strength (SS) models are particularly important. This paper aims to estimate the SS reliability for an inverse Weibull distribution having the same shape parameters but different scale parameters when the strength (X) and stress (Y) random variables are independent. In the presence of outliers and in a homogeneous situation, the maximum likelihood reliability estimator is computed. With independent gamma priors, a Bayesian estimation approach for SS reliability is also proposed. The symmetric and asymmetric loss functions are used to derive the Bayesian estimators of SS reliability. Some sophisticated calculations are carried out using Markov chain Monte Carlo methods. Simulations are used to investigate the precision of Bayesian and non-Bayesian estimates for SS reliability. Further, a comparative study among the Bayesian estimates in the case of uniform and gamma priors is carried out utilizing a simulation methodology. The provided methodology is ultimately applied to the actual data using the discussed model and data from head-neck cancer. According to the results of a study, larger sample sizes resulted in better reliability estimates for both techniques. Generally, as the number of outliers increased, the precision measures from both methods decreased. In all circumstances, the Bayesian estimates under the precautionary loss function outperformed the observed estimates under alternative loss functions. The actual data analysis assured the theoretical and simulated studies.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.