Thomas P. Farrell, Domingo Aerden, E. Baxter, Paul G. Starr, Michael L. Williams
{"title":"高分辨率 Sm-Nd 石榴石地质年代学揭示俯冲带变质过程中螺旋榴石的快速发展","authors":"Thomas P. Farrell, Domingo Aerden, E. Baxter, Paul G. Starr, Michael L. Williams","doi":"10.1130/g51882.1","DOIUrl":null,"url":null,"abstract":"Multiple studies have applied zoned garnet geochronology to place temporal constraints on the rates of metamorphism and deformation during orogenesis. We report new high-resolution isotope dilution−thermal ionization mass spectrometry Sm-Nd isochron ages on concentric growth zones from microstructurally and thermodynamically characterized garnets from the Betic Cordillera, southern Spain. Our ages for the garnet core (13.64 ± 0.31 Ma), mantle (13.41 ± 0.37 Ma), and rim (13.34 ± 0.45 Ma) indicate rapid garnet growth and are consistent with published garnet ages interpreted to reflect high-pressure metamorphism in the region. Thermodynamic analysis indicates garnets grew during subduction at ∼1.5−2.0 GPa and 570−600 °C. The core to rim duration of spiral garnet growth was just a few hundred thousand years. While other zoned garnet studies have shown similar rapid growth in subduction zone settings, this is the first documentation of such rapid growth of a spiral garnet. Combining this garnet growth duration with the magnitude of spiral inclusion trail curvature, we compute a strain rate of ∼10−13 s−1, an order of magnitude faster than all previous spiral garnet studies. We interpret that these spiral garnets recorded a rapid pulse of deformation and strain during the final stages of subduction and incipient exhumation.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"59 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid development of spiral garnets during subduction zone metamorphism revealed from high-resolution Sm-Nd garnet geochronology\",\"authors\":\"Thomas P. Farrell, Domingo Aerden, E. Baxter, Paul G. Starr, Michael L. Williams\",\"doi\":\"10.1130/g51882.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple studies have applied zoned garnet geochronology to place temporal constraints on the rates of metamorphism and deformation during orogenesis. We report new high-resolution isotope dilution−thermal ionization mass spectrometry Sm-Nd isochron ages on concentric growth zones from microstructurally and thermodynamically characterized garnets from the Betic Cordillera, southern Spain. Our ages for the garnet core (13.64 ± 0.31 Ma), mantle (13.41 ± 0.37 Ma), and rim (13.34 ± 0.45 Ma) indicate rapid garnet growth and are consistent with published garnet ages interpreted to reflect high-pressure metamorphism in the region. Thermodynamic analysis indicates garnets grew during subduction at ∼1.5−2.0 GPa and 570−600 °C. The core to rim duration of spiral garnet growth was just a few hundred thousand years. While other zoned garnet studies have shown similar rapid growth in subduction zone settings, this is the first documentation of such rapid growth of a spiral garnet. Combining this garnet growth duration with the magnitude of spiral inclusion trail curvature, we compute a strain rate of ∼10−13 s−1, an order of magnitude faster than all previous spiral garnet studies. We interpret that these spiral garnets recorded a rapid pulse of deformation and strain during the final stages of subduction and incipient exhumation.\",\"PeriodicalId\":503125,\"journal\":{\"name\":\"Geology\",\"volume\":\"59 25\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1130/g51882.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/g51882.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rapid development of spiral garnets during subduction zone metamorphism revealed from high-resolution Sm-Nd garnet geochronology
Multiple studies have applied zoned garnet geochronology to place temporal constraints on the rates of metamorphism and deformation during orogenesis. We report new high-resolution isotope dilution−thermal ionization mass spectrometry Sm-Nd isochron ages on concentric growth zones from microstructurally and thermodynamically characterized garnets from the Betic Cordillera, southern Spain. Our ages for the garnet core (13.64 ± 0.31 Ma), mantle (13.41 ± 0.37 Ma), and rim (13.34 ± 0.45 Ma) indicate rapid garnet growth and are consistent with published garnet ages interpreted to reflect high-pressure metamorphism in the region. Thermodynamic analysis indicates garnets grew during subduction at ∼1.5−2.0 GPa and 570−600 °C. The core to rim duration of spiral garnet growth was just a few hundred thousand years. While other zoned garnet studies have shown similar rapid growth in subduction zone settings, this is the first documentation of such rapid growth of a spiral garnet. Combining this garnet growth duration with the magnitude of spiral inclusion trail curvature, we compute a strain rate of ∼10−13 s−1, an order of magnitude faster than all previous spiral garnet studies. We interpret that these spiral garnets recorded a rapid pulse of deformation and strain during the final stages of subduction and incipient exhumation.