Vishwa Tiwari, R. D’Mello, Avinkrishnan Ambika Vijayachandran, Anthony Waas
{"title":"多边形弹性薄壳的轴向压缩响应","authors":"Vishwa Tiwari, R. D’Mello, Avinkrishnan Ambika Vijayachandran, Anthony Waas","doi":"10.1115/1.4064584","DOIUrl":null,"url":null,"abstract":"\n Thin-walled cylindrical shell structures are revisited with the objective of increasing the axial load-carrying capacity. By using the postbuckling reserve of rectangular plates, polygonal shells are studied, which combines the response of a plate-like structure with a shell-like structure. These “plate-shells” are shown to be imperfection-insensitive for a range of polygonal shell designs. Furthermore, their collapse load exceeds the corresponding load for a circular cylindrical shell. These results are a significant departure from the well-known imperfection sensitivity in the axial compressive response of cylindrical shells.","PeriodicalId":508156,"journal":{"name":"Journal of Applied Mechanics","volume":"6 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The axial compressive response of thin, elastic, polygonal shells\",\"authors\":\"Vishwa Tiwari, R. D’Mello, Avinkrishnan Ambika Vijayachandran, Anthony Waas\",\"doi\":\"10.1115/1.4064584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Thin-walled cylindrical shell structures are revisited with the objective of increasing the axial load-carrying capacity. By using the postbuckling reserve of rectangular plates, polygonal shells are studied, which combines the response of a plate-like structure with a shell-like structure. These “plate-shells” are shown to be imperfection-insensitive for a range of polygonal shell designs. Furthermore, their collapse load exceeds the corresponding load for a circular cylindrical shell. These results are a significant departure from the well-known imperfection sensitivity in the axial compressive response of cylindrical shells.\",\"PeriodicalId\":508156,\"journal\":{\"name\":\"Journal of Applied Mechanics\",\"volume\":\"6 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The axial compressive response of thin, elastic, polygonal shells
Thin-walled cylindrical shell structures are revisited with the objective of increasing the axial load-carrying capacity. By using the postbuckling reserve of rectangular plates, polygonal shells are studied, which combines the response of a plate-like structure with a shell-like structure. These “plate-shells” are shown to be imperfection-insensitive for a range of polygonal shell designs. Furthermore, their collapse load exceeds the corresponding load for a circular cylindrical shell. These results are a significant departure from the well-known imperfection sensitivity in the axial compressive response of cylindrical shells.