V. N. Volodin, R.A. Abdulvaliyev, S. Trebukhov, A. Nitsenko, X. Linnik
{"title":"在真空中通过镁蒸馏回收二次合金中的铍、锰和锆","authors":"V. N. Volodin, R.A. Abdulvaliyev, S. Trebukhov, A. Nitsenko, X. Linnik","doi":"10.31643/2024/6445.42","DOIUrl":null,"url":null,"abstract":"One of the methods for processing secondary magnesium raw materials containing rare refractory metals can be a distillation with the extraction of magnesium into condensate and the accumulation of rare metals in the distillation residue. The residue can be used as a master alloy for special alloys. To justify the possibility of this process, we calculated the boundaries of the vapor-liquid equilibrium fields for the regions of liquid solutions existence in the Mg – Be, Mg – Mn, and Mg – Zr systems at atmospheric pressure (101.33 kPa) and in vacuum (1.33 kPa). The value of the vacuum is due to the fact that a further increase in rarefaction will lead to the magnesium crystallization from the melt, and it will complicate the technology.We established that in the distillation process of magnesium removal from Mg – Be and Mg – Zr alloys, the vapor phase will be represented by more than 99.95 of magnesium. The presence of 0.45 mass.% Mn is possible in the Mg – Mn system at 1000 °C in thevapor phase – condensate . However, results of preliminary tests of the evaporation intensity established that the process conducted at 850-900 °C provides an acceptable evaporation rate of the volatile component (Mg) for technological conditions.Thus, we confirmed the possibility of the proposed method to process secondary light alloys containing beryllium, manganese, and zirconium, which can be involved in the main process intended to produce special alloys in the form of a master alloy with magnesium.","PeriodicalId":17896,"journal":{"name":"Kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik shikisattardy Keshendi Paidalanu","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recycling of beryllium, manganese, and zirconium from secondary alloys by magnesium distillation in vacuum\",\"authors\":\"V. N. Volodin, R.A. Abdulvaliyev, S. Trebukhov, A. Nitsenko, X. Linnik\",\"doi\":\"10.31643/2024/6445.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the methods for processing secondary magnesium raw materials containing rare refractory metals can be a distillation with the extraction of magnesium into condensate and the accumulation of rare metals in the distillation residue. The residue can be used as a master alloy for special alloys. To justify the possibility of this process, we calculated the boundaries of the vapor-liquid equilibrium fields for the regions of liquid solutions existence in the Mg – Be, Mg – Mn, and Mg – Zr systems at atmospheric pressure (101.33 kPa) and in vacuum (1.33 kPa). The value of the vacuum is due to the fact that a further increase in rarefaction will lead to the magnesium crystallization from the melt, and it will complicate the technology.We established that in the distillation process of magnesium removal from Mg – Be and Mg – Zr alloys, the vapor phase will be represented by more than 99.95 of magnesium. The presence of 0.45 mass.% Mn is possible in the Mg – Mn system at 1000 °C in thevapor phase – condensate . However, results of preliminary tests of the evaporation intensity established that the process conducted at 850-900 °C provides an acceptable evaporation rate of the volatile component (Mg) for technological conditions.Thus, we confirmed the possibility of the proposed method to process secondary light alloys containing beryllium, manganese, and zirconium, which can be involved in the main process intended to produce special alloys in the form of a master alloy with magnesium.\",\"PeriodicalId\":17896,\"journal\":{\"name\":\"Kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik shikisattardy Keshendi Paidalanu\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik shikisattardy Keshendi Paidalanu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31643/2024/6445.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik shikisattardy Keshendi Paidalanu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31643/2024/6445.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
处理含有稀有难熔金属的二次镁原料的方法之一是蒸馏,将镁提取到冷凝物中,并在蒸馏残渣中积累稀有金属。残渣可用作特殊合金的母合金。为了证明这一过程的可能性,我们计算了在大气压(101.33 千帕)和真空(1.33 千帕)下镁-铍、镁-锰和镁-锆体系中液溶存在区域的汽液平衡场边界。我们确定,在从 Mg - Be 和 Mg - Zr 合金中蒸馏除镁的过程中,气相中的镁含量将超过 99.95%。在 1000 °C 的气相-冷凝物中,镁-锰体系中可能存在 0.45 质量%的锰。然而,蒸发强度的初步测试结果表明,在 850-900 °C的温度下进行的工艺提供了技术条件下可接受的挥发性成分(镁)的蒸发率。因此,我们证实了所建议的方法加工含铍、锰和锆的二次轻合金的可能性,这些合金可参与旨在以镁主合金形式生产特殊合金的主要工艺。
Recycling of beryllium, manganese, and zirconium from secondary alloys by magnesium distillation in vacuum
One of the methods for processing secondary magnesium raw materials containing rare refractory metals can be a distillation with the extraction of magnesium into condensate and the accumulation of rare metals in the distillation residue. The residue can be used as a master alloy for special alloys. To justify the possibility of this process, we calculated the boundaries of the vapor-liquid equilibrium fields for the regions of liquid solutions existence in the Mg – Be, Mg – Mn, and Mg – Zr systems at atmospheric pressure (101.33 kPa) and in vacuum (1.33 kPa). The value of the vacuum is due to the fact that a further increase in rarefaction will lead to the magnesium crystallization from the melt, and it will complicate the technology.We established that in the distillation process of magnesium removal from Mg – Be and Mg – Zr alloys, the vapor phase will be represented by more than 99.95 of magnesium. The presence of 0.45 mass.% Mn is possible in the Mg – Mn system at 1000 °C in thevapor phase – condensate . However, results of preliminary tests of the evaporation intensity established that the process conducted at 850-900 °C provides an acceptable evaporation rate of the volatile component (Mg) for technological conditions.Thus, we confirmed the possibility of the proposed method to process secondary light alloys containing beryllium, manganese, and zirconium, which can be involved in the main process intended to produce special alloys in the form of a master alloy with magnesium.