{"title":"寒武纪浅滩中的生命瑞典早寒武纪保存完好的节肢动物和软体动物微化石","authors":"Ben J. Slater","doi":"10.1130/g51829.1","DOIUrl":null,"url":null,"abstract":"Burgess Shale−type (BST) Lagerstätten record an exceptional variety of Cambrian soft-bodied fauna, yet these deposits are typically restricted to outboard depositional settings >1000 km from the paleocoastline. For shallow, well-oxygenated shelf environments, our knowledge of non-mineralized animals (the majority of diversity) is severely limited, giving rise to substantial bias in our perception of Cambrian biotas. An alternate means of detecting soft-bodied Cambrian fauna, independent of paleobathymetry, is to use acid maceration to extract microscopic organic remains of non-mineralized animals, known as “small carbonaceous fossils” (SCFs). Here, a hitherto unknown diversity of Cambrian arthropod and mollusk remains are reported from shallow-marine sediments (Cambrian Stage 3 Mickwitzia Sandstone, Sweden). These microfossils comprise a variety of arthropod cuticles preserving sub-micron-scale anatomy alongside abundant radular mouthparts from mollusks—among the oldest known arthropod and molluscan SCFs on record. Significantly, at least three distinct types of fossil radula are identifiable (uniseriate, distichous, and polystichous forms), revealing that substantial diversification of the basic molluscan radula had already taken place by the early Cambrian. These cryptic elements of the biota—otherwise undetectable in such deposits—offer novel insights into Cambrian primary consumers as well as aspects of the fauna that are absent from deeper-water BST deposits.","PeriodicalId":503125,"journal":{"name":"Geology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life in the Cambrian shallows: Exceptionally preserved arthropod and mollusk microfossils from the early Cambrian of Sweden\",\"authors\":\"Ben J. Slater\",\"doi\":\"10.1130/g51829.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Burgess Shale−type (BST) Lagerstätten record an exceptional variety of Cambrian soft-bodied fauna, yet these deposits are typically restricted to outboard depositional settings >1000 km from the paleocoastline. For shallow, well-oxygenated shelf environments, our knowledge of non-mineralized animals (the majority of diversity) is severely limited, giving rise to substantial bias in our perception of Cambrian biotas. An alternate means of detecting soft-bodied Cambrian fauna, independent of paleobathymetry, is to use acid maceration to extract microscopic organic remains of non-mineralized animals, known as “small carbonaceous fossils” (SCFs). Here, a hitherto unknown diversity of Cambrian arthropod and mollusk remains are reported from shallow-marine sediments (Cambrian Stage 3 Mickwitzia Sandstone, Sweden). These microfossils comprise a variety of arthropod cuticles preserving sub-micron-scale anatomy alongside abundant radular mouthparts from mollusks—among the oldest known arthropod and molluscan SCFs on record. Significantly, at least three distinct types of fossil radula are identifiable (uniseriate, distichous, and polystichous forms), revealing that substantial diversification of the basic molluscan radula had already taken place by the early Cambrian. These cryptic elements of the biota—otherwise undetectable in such deposits—offer novel insights into Cambrian primary consumers as well as aspects of the fauna that are absent from deeper-water BST deposits.\",\"PeriodicalId\":503125,\"journal\":{\"name\":\"Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1130/g51829.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/g51829.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Life in the Cambrian shallows: Exceptionally preserved arthropod and mollusk microfossils from the early Cambrian of Sweden
Burgess Shale−type (BST) Lagerstätten record an exceptional variety of Cambrian soft-bodied fauna, yet these deposits are typically restricted to outboard depositional settings >1000 km from the paleocoastline. For shallow, well-oxygenated shelf environments, our knowledge of non-mineralized animals (the majority of diversity) is severely limited, giving rise to substantial bias in our perception of Cambrian biotas. An alternate means of detecting soft-bodied Cambrian fauna, independent of paleobathymetry, is to use acid maceration to extract microscopic organic remains of non-mineralized animals, known as “small carbonaceous fossils” (SCFs). Here, a hitherto unknown diversity of Cambrian arthropod and mollusk remains are reported from shallow-marine sediments (Cambrian Stage 3 Mickwitzia Sandstone, Sweden). These microfossils comprise a variety of arthropod cuticles preserving sub-micron-scale anatomy alongside abundant radular mouthparts from mollusks—among the oldest known arthropod and molluscan SCFs on record. Significantly, at least three distinct types of fossil radula are identifiable (uniseriate, distichous, and polystichous forms), revealing that substantial diversification of the basic molluscan radula had already taken place by the early Cambrian. These cryptic elements of the biota—otherwise undetectable in such deposits—offer novel insights into Cambrian primary consumers as well as aspects of the fauna that are absent from deeper-water BST deposits.