数据驱动的多地点短期负荷预测:综合方法

Anik Baul, Gobinda Chandra Sarker, Prokash Sikder, Utpal Mozumder, A. Abdelgawad
{"title":"数据驱动的多地点短期负荷预测:综合方法","authors":"Anik Baul, Gobinda Chandra Sarker, Prokash Sikder, Utpal Mozumder, A. Abdelgawad","doi":"10.3390/bdcc8020012","DOIUrl":null,"url":null,"abstract":"Short-term load forecasting (STLF) plays a crucial role in the planning, management, and stability of a country’s power system operation. In this study, we have developed a novel approach that can simultaneously predict the load demand of different regions in Bangladesh. When making predictions for loads from multiple locations simultaneously, the overall accuracy of the forecast can be improved by incorporating features from the various areas while reducing the complexity of using multiple models. Accurate and timely load predictions for specific regions with distinct demographics and economic characteristics can assist transmission and distribution companies in properly allocating their resources. Bangladesh, being a relatively small country, is divided into nine distinct power zones for electricity transmission across the nation. In this study, we have proposed a hybrid model, combining the Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU), designed to forecast load demand seven days ahead for each of the nine power zones simultaneously. For our study, nine years of data from a historical electricity demand dataset (from January 2014 to April 2023) are collected from the Power Grid Company of Bangladesh (PGCB) website. Considering the nonstationary characteristics of the dataset, the Interquartile Range (IQR) method and load averaging are employed to deal effectively with the outliers. Then, for more granularity, this data set has been augmented with interpolation at every 1 h interval. The proposed CNN-GRU model, trained on this augmented and refined dataset, is evaluated against established algorithms in the literature, including Long Short-Term Memory Networks (LSTM), GRU, CNN-LSTM, CNN-GRU, and Transformer-based algorithms. Compared to other approaches, the proposed technique demonstrated superior forecasting accuracy in terms of mean absolute performance error (MAPE) and root mean squared error (RMSE). The dataset and the source code are openly accessible to motivate further research.","PeriodicalId":505155,"journal":{"name":"Big Data and Cognitive Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Short-Term Load Forecasting for Multiple Locations: An Integrated Approach\",\"authors\":\"Anik Baul, Gobinda Chandra Sarker, Prokash Sikder, Utpal Mozumder, A. Abdelgawad\",\"doi\":\"10.3390/bdcc8020012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short-term load forecasting (STLF) plays a crucial role in the planning, management, and stability of a country’s power system operation. In this study, we have developed a novel approach that can simultaneously predict the load demand of different regions in Bangladesh. When making predictions for loads from multiple locations simultaneously, the overall accuracy of the forecast can be improved by incorporating features from the various areas while reducing the complexity of using multiple models. Accurate and timely load predictions for specific regions with distinct demographics and economic characteristics can assist transmission and distribution companies in properly allocating their resources. Bangladesh, being a relatively small country, is divided into nine distinct power zones for electricity transmission across the nation. In this study, we have proposed a hybrid model, combining the Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU), designed to forecast load demand seven days ahead for each of the nine power zones simultaneously. For our study, nine years of data from a historical electricity demand dataset (from January 2014 to April 2023) are collected from the Power Grid Company of Bangladesh (PGCB) website. Considering the nonstationary characteristics of the dataset, the Interquartile Range (IQR) method and load averaging are employed to deal effectively with the outliers. Then, for more granularity, this data set has been augmented with interpolation at every 1 h interval. The proposed CNN-GRU model, trained on this augmented and refined dataset, is evaluated against established algorithms in the literature, including Long Short-Term Memory Networks (LSTM), GRU, CNN-LSTM, CNN-GRU, and Transformer-based algorithms. Compared to other approaches, the proposed technique demonstrated superior forecasting accuracy in terms of mean absolute performance error (MAPE) and root mean squared error (RMSE). The dataset and the source code are openly accessible to motivate further research.\",\"PeriodicalId\":505155,\"journal\":{\"name\":\"Big Data and Cognitive Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/bdcc8020012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc8020012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

短期负荷预测(STLF)在国家电力系统的规划、管理和稳定运行中发挥着至关重要的作用。在这项研究中,我们开发了一种新方法,可以同时预测孟加拉国不同地区的负荷需求。在同时对多个地点的负荷进行预测时,通过结合不同地区的特征,可以提高预测的整体准确性,同时降低使用多个模型的复杂性。对具有不同人口和经济特征的特定地区进行准确及时的负荷预测,有助于输配电公司合理分配资源。孟加拉国是一个相对较小的国家,全国电力传输分为九个不同的电力区。在这项研究中,我们提出了一个混合模型,结合了卷积神经网络 (CNN) 和门控递归单元 (GRU),旨在同时预测九个电力区中每个电力区七天前的负荷需求。在研究中,我们从孟加拉国电网公司(PGCB)网站上收集了九年的历史电力需求数据集(2014 年 1 月至 2023 年 4 月)。考虑到数据集的非平稳特性,我们采用了四分位距(IQR)法和负荷平均法来有效处理异常值。然后,为了提高粒度,每隔 1 小时对该数据集进行插值。在这个经过增强和改进的数据集上训练的 CNN-GRU 模型,与文献中已有的算法进行了对比评估,包括长短期记忆网络 (LSTM)、GRU、CNN-LSTM、CNN-GRU 和基于变换器的算法。与其他方法相比,所提出的技术在平均绝对性能误差(MAPE)和均方根误差(RMSE)方面表现出更高的预测准确性。数据集和源代码可公开访问,以促进进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Short-Term Load Forecasting for Multiple Locations: An Integrated Approach
Short-term load forecasting (STLF) plays a crucial role in the planning, management, and stability of a country’s power system operation. In this study, we have developed a novel approach that can simultaneously predict the load demand of different regions in Bangladesh. When making predictions for loads from multiple locations simultaneously, the overall accuracy of the forecast can be improved by incorporating features from the various areas while reducing the complexity of using multiple models. Accurate and timely load predictions for specific regions with distinct demographics and economic characteristics can assist transmission and distribution companies in properly allocating their resources. Bangladesh, being a relatively small country, is divided into nine distinct power zones for electricity transmission across the nation. In this study, we have proposed a hybrid model, combining the Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU), designed to forecast load demand seven days ahead for each of the nine power zones simultaneously. For our study, nine years of data from a historical electricity demand dataset (from January 2014 to April 2023) are collected from the Power Grid Company of Bangladesh (PGCB) website. Considering the nonstationary characteristics of the dataset, the Interquartile Range (IQR) method and load averaging are employed to deal effectively with the outliers. Then, for more granularity, this data set has been augmented with interpolation at every 1 h interval. The proposed CNN-GRU model, trained on this augmented and refined dataset, is evaluated against established algorithms in the literature, including Long Short-Term Memory Networks (LSTM), GRU, CNN-LSTM, CNN-GRU, and Transformer-based algorithms. Compared to other approaches, the proposed technique demonstrated superior forecasting accuracy in terms of mean absolute performance error (MAPE) and root mean squared error (RMSE). The dataset and the source code are openly accessible to motivate further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信