不同辐照度条件下太阳能 P&O 和基于 ANN 的 MPPT 控制器的新型对比分析

Pavithra C, Dhayalan R, Anandha Kumar S, Dharshan Y, Haridharan R, Vijayadharshini M
{"title":"不同辐照度条件下太阳能 P&O 和基于 ANN 的 MPPT 控制器的新型对比分析","authors":"Pavithra C, Dhayalan R, Anandha Kumar S, Dharshan Y, Haridharan R, Vijayadharshini M","doi":"10.4108/ew.4942","DOIUrl":null,"url":null,"abstract":"The depletion of fossil fuels and rising energy demand have increased the use of renewable energy. Among all Solar PVs, system-based electricity production is increased due to multiple advantages. In this paper a Solar PV system with an Artificial Neural Network (ANN)-based Maximum Power Point Tracking (MPPT) controller is developed. ANN has multiple advantages like stability, improved dynamic response, and fast and precise output. The System is modelled with a DC-DC boost converter with Perturb and Observe (P&O)-based MPPT controller which is operated in MATLAB-based Simulink model. Both the controller output is analyzed and compared, among these two controllers ANN has very fast and more precise output under dynamic conditions.","PeriodicalId":502230,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"43 30","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Comparative Analysis of Solar P&O, ANN-based MPPT Controller under Different Irradiance Condition\",\"authors\":\"Pavithra C, Dhayalan R, Anandha Kumar S, Dharshan Y, Haridharan R, Vijayadharshini M\",\"doi\":\"10.4108/ew.4942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The depletion of fossil fuels and rising energy demand have increased the use of renewable energy. Among all Solar PVs, system-based electricity production is increased due to multiple advantages. In this paper a Solar PV system with an Artificial Neural Network (ANN)-based Maximum Power Point Tracking (MPPT) controller is developed. ANN has multiple advantages like stability, improved dynamic response, and fast and precise output. The System is modelled with a DC-DC boost converter with Perturb and Observe (P&O)-based MPPT controller which is operated in MATLAB-based Simulink model. Both the controller output is analyzed and compared, among these two controllers ANN has very fast and more precise output under dynamic conditions.\",\"PeriodicalId\":502230,\"journal\":{\"name\":\"EAI Endorsed Transactions on Energy Web\",\"volume\":\"43 30\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Energy Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ew.4942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.4942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

化石燃料的枯竭和能源需求的增长,增加了对可再生能源的使用。在所有太阳能光伏发电系统中,基于系统的发电量因其多重优势而得到提高。本文开发了一种基于人工神经网络(ANN)的最大功率点跟踪(MPPT)控制器的太阳能光伏系统。人工神经网络具有稳定性、改进的动态响应、快速和精确的输出等多重优势。该系统以直流-直流升压转换器为模型,采用基于 Perturb and Observe (P&O) 的 MPPT 控制器,在基于 MATLAB 的 Simulink 模型中运行。对两种控制器的输出进行了分析和比较,在这两种控制器中,ANN 在动态条件下具有非常快速和更精确的输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Comparative Analysis of Solar P&O, ANN-based MPPT Controller under Different Irradiance Condition
The depletion of fossil fuels and rising energy demand have increased the use of renewable energy. Among all Solar PVs, system-based electricity production is increased due to multiple advantages. In this paper a Solar PV system with an Artificial Neural Network (ANN)-based Maximum Power Point Tracking (MPPT) controller is developed. ANN has multiple advantages like stability, improved dynamic response, and fast and precise output. The System is modelled with a DC-DC boost converter with Perturb and Observe (P&O)-based MPPT controller which is operated in MATLAB-based Simulink model. Both the controller output is analyzed and compared, among these two controllers ANN has very fast and more precise output under dynamic conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信