{"title":"考虑变道行为的高速公路交通车辆轨迹重构","authors":"Cong Zhang , Yiheng Feng","doi":"10.1080/15472450.2024.2307031","DOIUrl":null,"url":null,"abstract":"<div><div>Vehicle trajectory data provides critical information for many transportation applications. Due to limitations in the data collection techniques, usually, only partial trajectories can be obtained. As a result, trajectory reconstruction where the missing trajectories are inferenced by the observed data is an essential step for many downstream applications. Existing studies usually consider a connected vehicle (CV) environment for trajectory data collection and ignore the lane-changing (LC) behaviors in the reconstruction process. The deployment of connected and autonomous vehicles (CAVs) makes it possible to collect trajectory data more efficiently with much lower penetrations. This study proposes a vehicle trajectory reconstruction algorithm considering LC maneuvers in the CAV environment. The Pettit test and a rule-based optimization algorithm are designed to predict the possible LC time points. Then two car-following models are applied to reconstruct trajectories. The NGSIM US101 dataset is applied to evaluate the proposed reconstruction algorithm under varying CAV penetration rates (PRs) (e.g., 2%, 3%, 5%). The prediction of LC time points achieves high accuracy with average prediction errors less than 1 s under CAV PRs greater than 2%. Compared to the ground truth trajectories, the reconstructed trajectories have the mean absolute error (MAE) less than one vehicle length under 3% and higher CAV PRs.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"29 3","pages":"Pages 235-250"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vehicle trajectory reconstruction for freeway traffic considering lane changing behaviors\",\"authors\":\"Cong Zhang , Yiheng Feng\",\"doi\":\"10.1080/15472450.2024.2307031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vehicle trajectory data provides critical information for many transportation applications. Due to limitations in the data collection techniques, usually, only partial trajectories can be obtained. As a result, trajectory reconstruction where the missing trajectories are inferenced by the observed data is an essential step for many downstream applications. Existing studies usually consider a connected vehicle (CV) environment for trajectory data collection and ignore the lane-changing (LC) behaviors in the reconstruction process. The deployment of connected and autonomous vehicles (CAVs) makes it possible to collect trajectory data more efficiently with much lower penetrations. This study proposes a vehicle trajectory reconstruction algorithm considering LC maneuvers in the CAV environment. The Pettit test and a rule-based optimization algorithm are designed to predict the possible LC time points. Then two car-following models are applied to reconstruct trajectories. The NGSIM US101 dataset is applied to evaluate the proposed reconstruction algorithm under varying CAV penetration rates (PRs) (e.g., 2%, 3%, 5%). The prediction of LC time points achieves high accuracy with average prediction errors less than 1 s under CAV PRs greater than 2%. Compared to the ground truth trajectories, the reconstructed trajectories have the mean absolute error (MAE) less than one vehicle length under 3% and higher CAV PRs.</div></div>\",\"PeriodicalId\":54792,\"journal\":{\"name\":\"Journal of Intelligent Transportation Systems\",\"volume\":\"29 3\",\"pages\":\"Pages 235-250\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1547245024000069\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245024000069","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Vehicle trajectory reconstruction for freeway traffic considering lane changing behaviors
Vehicle trajectory data provides critical information for many transportation applications. Due to limitations in the data collection techniques, usually, only partial trajectories can be obtained. As a result, trajectory reconstruction where the missing trajectories are inferenced by the observed data is an essential step for many downstream applications. Existing studies usually consider a connected vehicle (CV) environment for trajectory data collection and ignore the lane-changing (LC) behaviors in the reconstruction process. The deployment of connected and autonomous vehicles (CAVs) makes it possible to collect trajectory data more efficiently with much lower penetrations. This study proposes a vehicle trajectory reconstruction algorithm considering LC maneuvers in the CAV environment. The Pettit test and a rule-based optimization algorithm are designed to predict the possible LC time points. Then two car-following models are applied to reconstruct trajectories. The NGSIM US101 dataset is applied to evaluate the proposed reconstruction algorithm under varying CAV penetration rates (PRs) (e.g., 2%, 3%, 5%). The prediction of LC time points achieves high accuracy with average prediction errors less than 1 s under CAV PRs greater than 2%. Compared to the ground truth trajectories, the reconstructed trajectories have the mean absolute error (MAE) less than one vehicle length under 3% and higher CAV PRs.
期刊介绍:
The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new.
The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption.
The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.