{"title":"利用神经网络预测印度股票市场股票指数 NIFTY 50 的市盈率","authors":"R. G. Goud, Prof. M. Krishna Reddy","doi":"10.35940/ijmh.f1576.10050124","DOIUrl":null,"url":null,"abstract":"The ratio of present price of an index to its earnings is known as its price to earnings ratio denoted by P/E ratio. A high P/E means that an index’s price is high relative to earnings and overvalued. Its low value means that price is low relative to earnings and undervalued. A potential investor prefers an index with low P/E ratio. Therefore, the movement of the P/E ratio plays a crucial role in understanding the behaviour of the stock market. In this paper the modelling of the P/E ratio for the Indian equity market stock index NIFTY 50 using NNAR, MLP and ELM neural networks models and the traditional ARIMA model with Box-Jenkin’s method is carried out. It is found that MLP and NNAR neural networks models performed better than that of ARIMA model.","PeriodicalId":14104,"journal":{"name":"International Journal of Management and Humanities","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting of P/E Ratio for the Indian Equity Market Stock Index NIFTY 50 Using Neural Networks\",\"authors\":\"R. G. Goud, Prof. M. Krishna Reddy\",\"doi\":\"10.35940/ijmh.f1576.10050124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ratio of present price of an index to its earnings is known as its price to earnings ratio denoted by P/E ratio. A high P/E means that an index’s price is high relative to earnings and overvalued. Its low value means that price is low relative to earnings and undervalued. A potential investor prefers an index with low P/E ratio. Therefore, the movement of the P/E ratio plays a crucial role in understanding the behaviour of the stock market. In this paper the modelling of the P/E ratio for the Indian equity market stock index NIFTY 50 using NNAR, MLP and ELM neural networks models and the traditional ARIMA model with Box-Jenkin’s method is carried out. It is found that MLP and NNAR neural networks models performed better than that of ARIMA model.\",\"PeriodicalId\":14104,\"journal\":{\"name\":\"International Journal of Management and Humanities\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Management and Humanities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35940/ijmh.f1576.10050124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Management and Humanities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijmh.f1576.10050124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forecasting of P/E Ratio for the Indian Equity Market Stock Index NIFTY 50 Using Neural Networks
The ratio of present price of an index to its earnings is known as its price to earnings ratio denoted by P/E ratio. A high P/E means that an index’s price is high relative to earnings and overvalued. Its low value means that price is low relative to earnings and undervalued. A potential investor prefers an index with low P/E ratio. Therefore, the movement of the P/E ratio plays a crucial role in understanding the behaviour of the stock market. In this paper the modelling of the P/E ratio for the Indian equity market stock index NIFTY 50 using NNAR, MLP and ELM neural networks models and the traditional ARIMA model with Box-Jenkin’s method is carried out. It is found that MLP and NNAR neural networks models performed better than that of ARIMA model.