Andre S. E. Mialebama Bouesso, F. Mekiya Moutabanza, Jude R. Bayeni Mitoueni
{"title":"魏尔束上的交映结构与应用","authors":"Andre S. E. Mialebama Bouesso, F. Mekiya Moutabanza, Jude R. Bayeni Mitoueni","doi":"10.1007/s13370-024-01166-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>M</i> be a smooth manifold and <i>A</i> a Weil algebra. We introduce and discuss the symplectic structure in the Weil bundle <span>\\((M^A,\\pi ,M)\\)</span> and we establish the link between the symplectic structure in <i>M</i> and that in <span>\\(M^A.\\)</span> As applications, we discuss Hamiltonian vector fields, symplectic vector fields and poisson structures in both cases.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symplectic structure and applications on Weil bundles\",\"authors\":\"Andre S. E. Mialebama Bouesso, F. Mekiya Moutabanza, Jude R. Bayeni Mitoueni\",\"doi\":\"10.1007/s13370-024-01166-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>M</i> be a smooth manifold and <i>A</i> a Weil algebra. We introduce and discuss the symplectic structure in the Weil bundle <span>\\\\((M^A,\\\\pi ,M)\\\\)</span> and we establish the link between the symplectic structure in <i>M</i> and that in <span>\\\\(M^A.\\\\)</span> As applications, we discuss Hamiltonian vector fields, symplectic vector fields and poisson structures in both cases.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-024-01166-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01166-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 M 是光滑流形,A 是魏尔代数。我们介绍并讨论了 Weil 束 \((M^A,\pi ,M)\) 中的交映结构,并建立了 M 中的交映结构与 \(M^A.\) 中的交映结构之间的联系。作为应用,我们讨论了这两种情况下的哈密顿向量场、交映向量场和泊松结构。
Symplectic structure and applications on Weil bundles
Let M be a smooth manifold and A a Weil algebra. We introduce and discuss the symplectic structure in the Weil bundle \((M^A,\pi ,M)\) and we establish the link between the symplectic structure in M and that in \(M^A.\) As applications, we discuss Hamiltonian vector fields, symplectic vector fields and poisson structures in both cases.