通过优化表面相位设计菲涅尔区板图案的实现与验证

Q4 Engineering
Huy Vu, Joohyung Lee
{"title":"通过优化表面相位设计菲涅尔区板图案的实现与验证","authors":"Huy Vu, Joohyung Lee","doi":"10.7736/jkspe.023.124","DOIUrl":null,"url":null,"abstract":"In this study, we present a numerical simulation approach for designing Fresnel zone plate (FZP) patterns. By optimizing surface phase parameters using desired merit functions in ray-tracing software, the obtained surface phase was converted into an FZP pattern through a 5-step procedure. A comparison between our numerical simulation approach and the traditional analytical method showed a negligible zone size difference of 0.606 nm and nearly absolute agreement of 17.549 µm in focal spot size. The FZP pattern was experimentally verified by an expected focal spot size of 18.55 µm. Our approach demonstrated design flexibility and has potential applications in simulating various functionalities in FZP patterns and refractive-diffractive hybrid lenses to address specific optical challenges. The surface phase can be freely modified based on optimization objectives that cannot be achieved using the analytical approach, ensuring high-precision design for accurate extraction.","PeriodicalId":37663,"journal":{"name":"Journal of the Korean Society for Precision Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation and Verification of Fresnel Zone Plate Patterns Designed by Optimization of Surface Phase\",\"authors\":\"Huy Vu, Joohyung Lee\",\"doi\":\"10.7736/jkspe.023.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present a numerical simulation approach for designing Fresnel zone plate (FZP) patterns. By optimizing surface phase parameters using desired merit functions in ray-tracing software, the obtained surface phase was converted into an FZP pattern through a 5-step procedure. A comparison between our numerical simulation approach and the traditional analytical method showed a negligible zone size difference of 0.606 nm and nearly absolute agreement of 17.549 µm in focal spot size. The FZP pattern was experimentally verified by an expected focal spot size of 18.55 µm. Our approach demonstrated design flexibility and has potential applications in simulating various functionalities in FZP patterns and refractive-diffractive hybrid lenses to address specific optical challenges. The surface phase can be freely modified based on optimization objectives that cannot be achieved using the analytical approach, ensuring high-precision design for accurate extraction.\",\"PeriodicalId\":37663,\"journal\":{\"name\":\"Journal of the Korean Society for Precision Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Precision Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7736/jkspe.023.124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7736/jkspe.023.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一种设计菲涅尔区板 (FZP) 图案的数值模拟方法。在光线跟踪软件中使用所需的优点函数优化表面相位参数,通过 5 步程序将获得的表面相位转换为 FZP 图案。我们的数值模拟方法与传统的分析方法进行了比较,结果表明,两者的区域尺寸相差 0.606 nm,可以忽略不计,焦斑尺寸几乎绝对一致,均为 17.549 µm。经实验验证,FZP 图案的预期焦斑尺寸为 18.55 µm。我们的方法展示了设计的灵活性,并有望应用于模拟 FZP 图案和折射-衍射混合透镜的各种功能,以应对特定的光学挑战。表面相位可根据分析方法无法实现的优化目标自由修改,从而确保高精度设计,实现精确提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation and Verification of Fresnel Zone Plate Patterns Designed by Optimization of Surface Phase
In this study, we present a numerical simulation approach for designing Fresnel zone plate (FZP) patterns. By optimizing surface phase parameters using desired merit functions in ray-tracing software, the obtained surface phase was converted into an FZP pattern through a 5-step procedure. A comparison between our numerical simulation approach and the traditional analytical method showed a negligible zone size difference of 0.606 nm and nearly absolute agreement of 17.549 µm in focal spot size. The FZP pattern was experimentally verified by an expected focal spot size of 18.55 µm. Our approach demonstrated design flexibility and has potential applications in simulating various functionalities in FZP patterns and refractive-diffractive hybrid lenses to address specific optical challenges. The surface phase can be freely modified based on optimization objectives that cannot be achieved using the analytical approach, ensuring high-precision design for accurate extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Korean Society for Precision Engineering
Journal of the Korean Society for Precision Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
0.50
自引率
0.00%
发文量
104
期刊介绍: Journal of the Korean Society for Precision Engineering (JKSPE) is devoted to publishing original research articles with high ethical standard on all aspects of precision engineering and manufacturing. Specifically, the journal focuses on articles related to improving the precision of machines and manufacturing processes through implementation of creative solutions that stem from advanced research using novel experimental methods, predictive modeling techniques, and rigorous analyses based on mechanical engineering or multidisciplinary approach. The expected outcomes of the knowledge disseminated from JKSPE are enhanced reliability, better motion precision, higher measurement accuracy, and sufficient reliability of precision systems. The various topics covered by JKSPE include: Precision Manufacturing processes, Precision Measurements, Robotics and Automation / Control, Smart Manufacturing System, Design and Materials, Machine Tools, Nano/Micro Technology, Biomechanical Engineering, Additive Manufacturing System, Green Manufacturing Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信