{"title":"在墨西哥中部盐碱地上应用生物炭提高小麦发芽成功率","authors":"L. E. Medina-Orozco","doi":"10.3103/s0147687423050022","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Soil salinity is one of the main limitations in wheat production worldwide. Global wheat crop losses due to saline stress are estimated at 15–40%. It is reported that 60% of the soils of agricultural areas of Mexico are affected by salinity; that means a significant area of soils under wheat have problems related to the toxicity of soluble salts. In the country, an annual wheat area of approximately 554 thousand hectares is harvested; this crop represents 9.7% of the total grains’ yields grown nationally. The majority of the fields are irrigated, while the remaining 13% are under rainfed agriculture. A controlled trial was conducted with Urbina S2007 variety wheat in the present study. The wheat seed was planted in pots in strongly saline soil (pH = 8.8 and E.C. = 10.59 dSm<sup>–1</sup>), the soil’s name Salic Vertisol (Gleyic). The experimental design consisted of three completely random blocks, each one consisting of twenty pots. In ten pots, 1% of biochar (w/w) (T1) was added, while the rest consisted of a control without biochar (T0). The percentage of germinated seeds was evaluated; to explain the differences in treatments, the soil Water Holding Capacity (WHC), pH, electrical conductivity (CE) and soil temperature were measured. The results showed a germination rate of 62.5% in T1 and 25.0% in T0. Biochar application resulted in a 21% increase in the WHC. Soil pH values after the test were 8.5 in T1 and 8.0 in T0. The soil temperature varied between 20 and 34°C, and there were no differences between treatments. The application of biochar in salts affected soils is non-conventional alternative amendment to increase germination success in wheat crops.</p>","PeriodicalId":501690,"journal":{"name":"Moscow University Soil Science Bulletin","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochar Application in Saline Soils for Increasing Wheat Germination Success in Central Mexico\",\"authors\":\"L. E. Medina-Orozco\",\"doi\":\"10.3103/s0147687423050022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Soil salinity is one of the main limitations in wheat production worldwide. Global wheat crop losses due to saline stress are estimated at 15–40%. It is reported that 60% of the soils of agricultural areas of Mexico are affected by salinity; that means a significant area of soils under wheat have problems related to the toxicity of soluble salts. In the country, an annual wheat area of approximately 554 thousand hectares is harvested; this crop represents 9.7% of the total grains’ yields grown nationally. The majority of the fields are irrigated, while the remaining 13% are under rainfed agriculture. A controlled trial was conducted with Urbina S2007 variety wheat in the present study. The wheat seed was planted in pots in strongly saline soil (pH = 8.8 and E.C. = 10.59 dSm<sup>–1</sup>), the soil’s name Salic Vertisol (Gleyic). The experimental design consisted of three completely random blocks, each one consisting of twenty pots. In ten pots, 1% of biochar (w/w) (T1) was added, while the rest consisted of a control without biochar (T0). The percentage of germinated seeds was evaluated; to explain the differences in treatments, the soil Water Holding Capacity (WHC), pH, electrical conductivity (CE) and soil temperature were measured. The results showed a germination rate of 62.5% in T1 and 25.0% in T0. Biochar application resulted in a 21% increase in the WHC. Soil pH values after the test were 8.5 in T1 and 8.0 in T0. The soil temperature varied between 20 and 34°C, and there were no differences between treatments. The application of biochar in salts affected soils is non-conventional alternative amendment to increase germination success in wheat crops.</p>\",\"PeriodicalId\":501690,\"journal\":{\"name\":\"Moscow University Soil Science Bulletin\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Soil Science Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s0147687423050022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Soil Science Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0147687423050022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biochar Application in Saline Soils for Increasing Wheat Germination Success in Central Mexico
Abstract
Soil salinity is one of the main limitations in wheat production worldwide. Global wheat crop losses due to saline stress are estimated at 15–40%. It is reported that 60% of the soils of agricultural areas of Mexico are affected by salinity; that means a significant area of soils under wheat have problems related to the toxicity of soluble salts. In the country, an annual wheat area of approximately 554 thousand hectares is harvested; this crop represents 9.7% of the total grains’ yields grown nationally. The majority of the fields are irrigated, while the remaining 13% are under rainfed agriculture. A controlled trial was conducted with Urbina S2007 variety wheat in the present study. The wheat seed was planted in pots in strongly saline soil (pH = 8.8 and E.C. = 10.59 dSm–1), the soil’s name Salic Vertisol (Gleyic). The experimental design consisted of three completely random blocks, each one consisting of twenty pots. In ten pots, 1% of biochar (w/w) (T1) was added, while the rest consisted of a control without biochar (T0). The percentage of germinated seeds was evaluated; to explain the differences in treatments, the soil Water Holding Capacity (WHC), pH, electrical conductivity (CE) and soil temperature were measured. The results showed a germination rate of 62.5% in T1 and 25.0% in T0. Biochar application resulted in a 21% increase in the WHC. Soil pH values after the test were 8.5 in T1 and 8.0 in T0. The soil temperature varied between 20 and 34°C, and there were no differences between treatments. The application of biochar in salts affected soils is non-conventional alternative amendment to increase germination success in wheat crops.