其中某些特定不变子群是 TI 子群或子法向子群的有限群

Pub Date : 2024-01-30 DOI:10.1515/gmj-2024-2001
Yifan Liu, Jiangtao Shi
{"title":"其中某些特定不变子群是 TI 子群或子法向子群的有限群","authors":"Yifan Liu, Jiangtao Shi","doi":"10.1515/gmj-2024-2001","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>A</jats:italic> and <jats:italic>G</jats:italic> be finite groups such that <jats:italic>A</jats:italic> acts coprimely on <jats:italic>G</jats:italic> by automorphisms. We prove that if every self-centralizing non-nilpotent <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is a TI-subgroup or a subnormal subgroup, then every non-nilpotent <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is subnormal and <jats:italic>G</jats:italic> is <jats:italic>p</jats:italic>-nilpotent or <jats:italic>p</jats:italic>-closed for any prime divisor <jats:italic>p</jats:italic> of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2001_eq_0039.png\" /> <jats:tex-math>{|G|}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. If every self-centralizing non-metacyclic <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is a TI-subgroup or a subnormal subgroup, then every non-metacyclic <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is subnormal and <jats:italic>G</jats:italic> is solvable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite groups in which some particular invariant subgroups are TI-subgroups or subnormal subgroups\",\"authors\":\"Yifan Liu, Jiangtao Shi\",\"doi\":\"10.1515/gmj-2024-2001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:italic>A</jats:italic> and <jats:italic>G</jats:italic> be finite groups such that <jats:italic>A</jats:italic> acts coprimely on <jats:italic>G</jats:italic> by automorphisms. We prove that if every self-centralizing non-nilpotent <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is a TI-subgroup or a subnormal subgroup, then every non-nilpotent <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is subnormal and <jats:italic>G</jats:italic> is <jats:italic>p</jats:italic>-nilpotent or <jats:italic>p</jats:italic>-closed for any prime divisor <jats:italic>p</jats:italic> of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2001_eq_0039.png\\\" /> <jats:tex-math>{|G|}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. If every self-centralizing non-metacyclic <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is a TI-subgroup or a subnormal subgroup, then every non-metacyclic <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is subnormal and <jats:italic>G</jats:italic> is solvable.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 A 和 G 都是有限群,且 A 通过自动形共同作用于 G。我们证明,如果 G 的每个自中心化非零能 A 不变子群都是 TI 子群或子正常子群,那么 G 的每个非零能 A 不变子群都是子正常的,并且对于 | G | {|G|} 的任何素除数 p,G 都是 p 零能或 p 封闭的。如果 G 的每个自中心化非元胞 A 不变子群都是 TI 子群或子正常子群,那么 G 的每个非元胞 A 不变子群都是子正常的,并且 G 是可解的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Finite groups in which some particular invariant subgroups are TI-subgroups or subnormal subgroups
Let A and G be finite groups such that A acts coprimely on G by automorphisms. We prove that if every self-centralizing non-nilpotent A-invariant subgroup of G is a TI-subgroup or a subnormal subgroup, then every non-nilpotent A-invariant subgroup of G is subnormal and G is p-nilpotent or p-closed for any prime divisor p of | G | {|G|} . If every self-centralizing non-metacyclic A-invariant subgroup of G is a TI-subgroup or a subnormal subgroup, then every non-metacyclic A-invariant subgroup of G is subnormal and G is solvable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信