其中某些特定不变子群是 TI 子群或子法向子群的有限群

IF 0.8 4区 数学 Q2 MATHEMATICS
Yifan Liu, Jiangtao Shi
{"title":"其中某些特定不变子群是 TI 子群或子法向子群的有限群","authors":"Yifan Liu, Jiangtao Shi","doi":"10.1515/gmj-2024-2001","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>A</jats:italic> and <jats:italic>G</jats:italic> be finite groups such that <jats:italic>A</jats:italic> acts coprimely on <jats:italic>G</jats:italic> by automorphisms. We prove that if every self-centralizing non-nilpotent <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is a TI-subgroup or a subnormal subgroup, then every non-nilpotent <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is subnormal and <jats:italic>G</jats:italic> is <jats:italic>p</jats:italic>-nilpotent or <jats:italic>p</jats:italic>-closed for any prime divisor <jats:italic>p</jats:italic> of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2001_eq_0039.png\" /> <jats:tex-math>{|G|}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. If every self-centralizing non-metacyclic <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is a TI-subgroup or a subnormal subgroup, then every non-metacyclic <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is subnormal and <jats:italic>G</jats:italic> is solvable.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":"5 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite groups in which some particular invariant subgroups are TI-subgroups or subnormal subgroups\",\"authors\":\"Yifan Liu, Jiangtao Shi\",\"doi\":\"10.1515/gmj-2024-2001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:italic>A</jats:italic> and <jats:italic>G</jats:italic> be finite groups such that <jats:italic>A</jats:italic> acts coprimely on <jats:italic>G</jats:italic> by automorphisms. We prove that if every self-centralizing non-nilpotent <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is a TI-subgroup or a subnormal subgroup, then every non-nilpotent <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is subnormal and <jats:italic>G</jats:italic> is <jats:italic>p</jats:italic>-nilpotent or <jats:italic>p</jats:italic>-closed for any prime divisor <jats:italic>p</jats:italic> of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2001_eq_0039.png\\\" /> <jats:tex-math>{|G|}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. If every self-centralizing non-metacyclic <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is a TI-subgroup or a subnormal subgroup, then every non-metacyclic <jats:italic>A</jats:italic>-invariant subgroup of <jats:italic>G</jats:italic> is subnormal and <jats:italic>G</jats:italic> is solvable.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2001\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 A 和 G 都是有限群,且 A 通过自动形共同作用于 G。我们证明,如果 G 的每个自中心化非零能 A 不变子群都是 TI 子群或子正常子群,那么 G 的每个非零能 A 不变子群都是子正常的,并且对于 | G | {|G|} 的任何素除数 p,G 都是 p 零能或 p 封闭的。如果 G 的每个自中心化非元胞 A 不变子群都是 TI 子群或子正常子群,那么 G 的每个非元胞 A 不变子群都是子正常的,并且 G 是可解的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite groups in which some particular invariant subgroups are TI-subgroups or subnormal subgroups
Let A and G be finite groups such that A acts coprimely on G by automorphisms. We prove that if every self-centralizing non-nilpotent A-invariant subgroup of G is a TI-subgroup or a subnormal subgroup, then every non-nilpotent A-invariant subgroup of G is subnormal and G is p-nilpotent or p-closed for any prime divisor p of | G | {|G|} . If every self-centralizing non-metacyclic A-invariant subgroup of G is a TI-subgroup or a subnormal subgroup, then every non-metacyclic A-invariant subgroup of G is subnormal and G is solvable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信