广义互变积和饱和形成,ii

IF 0.6 4区 数学 Q3 MATHEMATICS
ADOLFO BALLESTER-BOLINCHES, SESUAI Y. MADANHA, TENDAI M. MUDZIIRI SHUMBA, MARÍA C. PEDRAZA-AGUILERA
{"title":"广义互变积和饱和形成,ii","authors":"ADOLFO BALLESTER-BOLINCHES, SESUAI Y. MADANHA, TENDAI M. MUDZIIRI SHUMBA, MARÍA C. PEDRAZA-AGUILERA","doi":"10.1017/s0004972723001430","DOIUrl":null,"url":null,"abstract":"<p>A group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$G=AB$</span></span></img></span></span> is the weakly mutually permutable product of the subgroups <span>A</span> and <span>B</span>, if <span>A</span> permutes with every subgroup of <span>B</span> containing <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$A \\cap B$</span></span></img></span></span> and <span>B</span> permutes with every subgroup of <span>A</span> containing <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$A \\cap B$</span></span></img></span></span>. Weakly mutually permutable products were introduced by the first, second and fourth authors [‘Generalised mutually permutable products and saturated formations’, <span>J. Algebra</span> <span>595</span> (2022), 434–443] who showed that if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G'$</span></span></img></span></span> is nilpotent, <span>A</span> permutes with every Sylow subgroup of <span>B</span> and <span>B</span> permutes with every Sylow subgroup of <span>A</span>, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$G^{\\mathfrak {F}}=A^{\\mathfrak {F}}B^{\\mathfrak {F}} $</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$ \\mathfrak {F} $</span></span></img></span></span> is a saturated formation containing <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$ \\mathfrak {U} $</span></span></img></span></span>, the class of supersoluble groups. In this article we prove results on weakly mutually permutable products concerning <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$ \\mathfrak {F} $</span></span></img></span></span>-residuals, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$ \\mathfrak {F} $</span></span></img></span></span>-projectors and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {F}$</span></span></img></span></span>-normalisers. As an application of some of our arguments, we unify some results on weakly mutually <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$sn$</span></span></img></span></span>-products.</p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"6 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GENERALISED MUTUALLY PERMUTABLE PRODUCTS AND SATURATED FORMATIONS, II\",\"authors\":\"ADOLFO BALLESTER-BOLINCHES, SESUAI Y. MADANHA, TENDAI M. MUDZIIRI SHUMBA, MARÍA C. PEDRAZA-AGUILERA\",\"doi\":\"10.1017/s0004972723001430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A group <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G=AB$</span></span></img></span></span> is the weakly mutually permutable product of the subgroups <span>A</span> and <span>B</span>, if <span>A</span> permutes with every subgroup of <span>B</span> containing <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$A \\\\cap B$</span></span></img></span></span> and <span>B</span> permutes with every subgroup of <span>A</span> containing <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$A \\\\cap B$</span></span></img></span></span>. Weakly mutually permutable products were introduced by the first, second and fourth authors [‘Generalised mutually permutable products and saturated formations’, <span>J. Algebra</span> <span>595</span> (2022), 434–443] who showed that if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G'$</span></span></img></span></span> is nilpotent, <span>A</span> permutes with every Sylow subgroup of <span>B</span> and <span>B</span> permutes with every Sylow subgroup of <span>A</span>, then <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G^{\\\\mathfrak {F}}=A^{\\\\mathfrak {F}}B^{\\\\mathfrak {F}} $</span></span></img></span></span>, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$ \\\\mathfrak {F} $</span></span></img></span></span> is a saturated formation containing <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$ \\\\mathfrak {U} $</span></span></img></span></span>, the class of supersoluble groups. In this article we prove results on weakly mutually permutable products concerning <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$ \\\\mathfrak {F} $</span></span></img></span></span>-residuals, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$ \\\\mathfrak {F} $</span></span></img></span></span>-projectors and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathfrak {F}$</span></span></img></span></span>-normalisers. As an application of some of our arguments, we unify some results on weakly mutually <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240129062406367-0762:S0004972723001430:S0004972723001430_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$sn$</span></span></img></span></span>-products.</p>\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723001430\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001430","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果 A 与 B 的每一个包含 $A \cap B$ 的子群发生互变,而 B 与 A 的每一个包含 $A \cap B$ 的子群发生互变,那么一个群 $G=AB$ 是子群 A 和 B 的弱互变积。第一、第二和第四作者提出了弱互变积['广义互变积与饱和形式',《代数学报》595 (2022),434-443],他们证明了如果 $G'$ 是零幂的,A 与 B 的每个 Sylow 子群互变,B 与 A 的每个 Sylow 子群互变,那么 $G^{\mathfrak {F}}=A^{\mathfrak {F}}B^{\mathfrak {F}}.$, 其中 $ \mathfrak {F} $ 是包含 $ \mathfrak {U} $ 的饱和形成,即超可溶群类。在这篇文章中,我们证明了关于$ \mathfrak {F} $残差、$ \mathfrak {F} $投影和$ \mathfrak {F}$ 归一的弱互变积的结果。作为我们一些论证的应用,我们统一了关于弱互斥 $sn$ 积的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GENERALISED MUTUALLY PERMUTABLE PRODUCTS AND SATURATED FORMATIONS, II

A group $G=AB$ is the weakly mutually permutable product of the subgroups A and B, if A permutes with every subgroup of B containing $A \cap B$ and B permutes with every subgroup of A containing $A \cap B$. Weakly mutually permutable products were introduced by the first, second and fourth authors [‘Generalised mutually permutable products and saturated formations’, J. Algebra 595 (2022), 434–443] who showed that if $G'$ is nilpotent, A permutes with every Sylow subgroup of B and B permutes with every Sylow subgroup of A, then $G^{\mathfrak {F}}=A^{\mathfrak {F}}B^{\mathfrak {F}} $, where $ \mathfrak {F} $ is a saturated formation containing $ \mathfrak {U} $, the class of supersoluble groups. In this article we prove results on weakly mutually permutable products concerning $ \mathfrak {F} $-residuals, $ \mathfrak {F} $-projectors and $\mathfrak {F}$-normalisers. As an application of some of our arguments, we unify some results on weakly mutually $sn$-products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信