$${{mathbb {R}}^d$$ 子集的可达性和 r-凸性的可计算边界

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Ryan Cotsakis
{"title":"$${{mathbb {R}}^d$$ 子集的可达性和 r-凸性的可计算边界","authors":"Ryan Cotsakis","doi":"10.1007/s00454-023-00624-8","DOIUrl":null,"url":null,"abstract":"<p>The convexity of a set can be generalized to the two weaker notions of positive reach and <i>r</i>-convexity; both describe the regularity of a set’s boundary. For any compact subset of <span>\\({{\\mathbb {R}}}^d\\)</span>, we provide methods for computing upper bounds on these quantities from point cloud data. The bounds converge to the respective quantities as the sampling scale of the point cloud decreases, and the rate of convergence for the bound on the reach is given under a weak regularity condition. We also introduce the <span>\\(\\beta \\)</span>-reach, a generalization of the reach that excludes small-scale features of size less than a parameter <span>\\(\\beta \\in [0,\\infty )\\)</span>. Numerical studies suggest how the <span>\\(\\beta \\)</span>-reach can be used in high-dimension to infer the reach and other geometric properties of smooth submanifolds.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"5 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computable Bounds for the Reach and r-Convexity of Subsets of $${{\\\\mathbb {R}}}^d$$\",\"authors\":\"Ryan Cotsakis\",\"doi\":\"10.1007/s00454-023-00624-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The convexity of a set can be generalized to the two weaker notions of positive reach and <i>r</i>-convexity; both describe the regularity of a set’s boundary. For any compact subset of <span>\\\\({{\\\\mathbb {R}}}^d\\\\)</span>, we provide methods for computing upper bounds on these quantities from point cloud data. The bounds converge to the respective quantities as the sampling scale of the point cloud decreases, and the rate of convergence for the bound on the reach is given under a weak regularity condition. We also introduce the <span>\\\\(\\\\beta \\\\)</span>-reach, a generalization of the reach that excludes small-scale features of size less than a parameter <span>\\\\(\\\\beta \\\\in [0,\\\\infty )\\\\)</span>. Numerical studies suggest how the <span>\\\\(\\\\beta \\\\)</span>-reach can be used in high-dimension to infer the reach and other geometric properties of smooth submanifolds.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00624-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00624-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

一个集合的凸性可以概括为两个较弱的概念:正凸性和r-凸性;这两个概念都描述了一个集合边界的规则性。对于 \({{\mathbb {R}}^d\) 的任意紧凑子集,我们提供了从点云数据计算这些量的上界的方法。随着点云采样尺度的减小,上界会收敛到相应的量,并且在弱正则性条件下给出了达到上界的收敛速率。我们还引入了 \(\beta \)-reach,这是对 reach 的概括,它排除了大小小于参数 \(\beta \in [0,\infty )\) 的小尺度特征。数值研究表明了如何在高维度上使用(beta)-reach来推断光滑子实体的reach和其他几何特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computable Bounds for the Reach and r-Convexity of Subsets of $${{\mathbb {R}}}^d$$

Computable Bounds for the Reach and r-Convexity of Subsets of $${{\mathbb {R}}}^d$$

The convexity of a set can be generalized to the two weaker notions of positive reach and r-convexity; both describe the regularity of a set’s boundary. For any compact subset of \({{\mathbb {R}}}^d\), we provide methods for computing upper bounds on these quantities from point cloud data. The bounds converge to the respective quantities as the sampling scale of the point cloud decreases, and the rate of convergence for the bound on the reach is given under a weak regularity condition. We also introduce the \(\beta \)-reach, a generalization of the reach that excludes small-scale features of size less than a parameter \(\beta \in [0,\infty )\). Numerical studies suggest how the \(\beta \)-reach can be used in high-dimension to infer the reach and other geometric properties of smooth submanifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信