具有奇异非线性的非线性退化抛物方程

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Hichem Khelifi, Fares Mokhtari
{"title":"具有奇异非线性的非线性退化抛物方程","authors":"Hichem Khelifi,&nbsp;Fares Mokhtari","doi":"10.1007/s10440-024-00633-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the existence and regularity results for some parabolic equations with degenerate coercivity, and a singular right-hand side. The model problem is </p><div><div><span>$$ \\left \\{ \\textstyle\\begin{array}{l@{\\quad }l} \\frac{\\partial u}{\\partial t}-\\text{div} \\left ( \\frac{\\left (1+\\vert \\nabla u\\vert ^{-\\Lambda }\\right )\\vert \\nabla u\\vert ^{p-2}\\nabla u}{(1+\\vert u\\vert )^{\\theta }} \\right )=\\frac{f}{(e^{u}-1)^{\\gamma }} &amp; \\text{in}\\;\\;Q_{T}, \\\\ u(x,0)=0 &amp; \\text{on}\\;\\; \\Omega , \\\\ u =0 &amp; \\text{on}\\;\\; \\partial Q_{T}, \\end{array}\\displaystyle \\right . $$</span></div><div>\n (0.1)\n </div></div><p> where <span>\\(\\Omega \\)</span> is a bounded open subset of <span>\\(\\mathbb{R}^{N}\\)</span> <span>\\(N\\geq 2\\)</span>, <span>\\(T&gt;0\\)</span>, <span>\\(\\Lambda \\in [0,p-1)\\)</span>, <span>\\(f\\)</span> is a non-negative function belonging to <span>\\(L^{m}(Q_{T})\\)</span>, <span>\\(Q_{T}=\\Omega \\times (0,T)\\)</span>, <span>\\(\\partial Q_{T}=\\partial \\Omega \\times (0,T)\\)</span>, <span>\\(0\\leq \\theta &lt; p-1+\\frac{p}{N}+\\gamma (1+\\frac{p}{N})\\)</span> and <span>\\(0\\leq \\gamma &lt; p-1\\)</span>.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"189 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Degenerate Parabolic Equations with a Singular Nonlinearity\",\"authors\":\"Hichem Khelifi,&nbsp;Fares Mokhtari\",\"doi\":\"10.1007/s10440-024-00633-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the existence and regularity results for some parabolic equations with degenerate coercivity, and a singular right-hand side. The model problem is </p><div><div><span>$$ \\\\left \\\\{ \\\\textstyle\\\\begin{array}{l@{\\\\quad }l} \\\\frac{\\\\partial u}{\\\\partial t}-\\\\text{div} \\\\left ( \\\\frac{\\\\left (1+\\\\vert \\\\nabla u\\\\vert ^{-\\\\Lambda }\\\\right )\\\\vert \\\\nabla u\\\\vert ^{p-2}\\\\nabla u}{(1+\\\\vert u\\\\vert )^{\\\\theta }} \\\\right )=\\\\frac{f}{(e^{u}-1)^{\\\\gamma }} &amp; \\\\text{in}\\\\;\\\\;Q_{T}, \\\\\\\\ u(x,0)=0 &amp; \\\\text{on}\\\\;\\\\; \\\\Omega , \\\\\\\\ u =0 &amp; \\\\text{on}\\\\;\\\\; \\\\partial Q_{T}, \\\\end{array}\\\\displaystyle \\\\right . $$</span></div><div>\\n (0.1)\\n </div></div><p> where <span>\\\\(\\\\Omega \\\\)</span> is a bounded open subset of <span>\\\\(\\\\mathbb{R}^{N}\\\\)</span> <span>\\\\(N\\\\geq 2\\\\)</span>, <span>\\\\(T&gt;0\\\\)</span>, <span>\\\\(\\\\Lambda \\\\in [0,p-1)\\\\)</span>, <span>\\\\(f\\\\)</span> is a non-negative function belonging to <span>\\\\(L^{m}(Q_{T})\\\\)</span>, <span>\\\\(Q_{T}=\\\\Omega \\\\times (0,T)\\\\)</span>, <span>\\\\(\\\\partial Q_{T}=\\\\partial \\\\Omega \\\\times (0,T)\\\\)</span>, <span>\\\\(0\\\\leq \\\\theta &lt; p-1+\\\\frac{p}{N}+\\\\gamma (1+\\\\frac{p}{N})\\\\)</span> and <span>\\\\(0\\\\leq \\\\gamma &lt; p-1\\\\)</span>.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"189 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00633-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00633-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一些具有退化矫顽力和奇异右边的抛物方程的存在性和正则性结果。模型问题是 $$ (left){ (textstyle/begin{array}{l@/{quad }l}\frac{partial u}{partial t}-\text{div} \left ( \frac{left (1+vert \nabla u\vert ^{-\Lambda }\right )\vert \nabla u\vert ^{p-2}\nabla u}{(1+vert u\vert ) ^{\theta }}=frac{f}{(e^{u}-1)^{gamma }} & text{in}\;\;Q_{T}, \ u(x,0)=0 & \text{on}\;\Omega , \ u =0 & \text{on}\;\;\partial Q_{T}, \end{array}\displaystyle \right . $$(0.1) where \(\Omega \) is a bounded open subset of \(\mathbb{R}^{N}\) \(N\geq 2\), \(T>;0), (在 [0,p-1) 中), (f)是属于 (L^{m}(Q_{T}))的非负函数, (Q_{T}=\Omega \times (0,T)\), (部分 Q_{T}=\partial \Omega \times (0,T)\), (0\leq \theta <;p-1+frac{p}{N}+gamma (1+\frac{p}{N})\) and\(0\leq \gamma < p-1\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Degenerate Parabolic Equations with a Singular Nonlinearity

In this paper, we study the existence and regularity results for some parabolic equations with degenerate coercivity, and a singular right-hand side. The model problem is

$$ \left \{ \textstyle\begin{array}{l@{\quad }l} \frac{\partial u}{\partial t}-\text{div} \left ( \frac{\left (1+\vert \nabla u\vert ^{-\Lambda }\right )\vert \nabla u\vert ^{p-2}\nabla u}{(1+\vert u\vert )^{\theta }} \right )=\frac{f}{(e^{u}-1)^{\gamma }} & \text{in}\;\;Q_{T}, \\ u(x,0)=0 & \text{on}\;\; \Omega , \\ u =0 & \text{on}\;\; \partial Q_{T}, \end{array}\displaystyle \right . $$
(0.1)

where \(\Omega \) is a bounded open subset of \(\mathbb{R}^{N}\) \(N\geq 2\), \(T>0\), \(\Lambda \in [0,p-1)\), \(f\) is a non-negative function belonging to \(L^{m}(Q_{T})\), \(Q_{T}=\Omega \times (0,T)\), \(\partial Q_{T}=\partial \Omega \times (0,T)\), \(0\leq \theta < p-1+\frac{p}{N}+\gamma (1+\frac{p}{N})\) and \(0\leq \gamma < p-1\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信