{"title":"一类具有随时间变化的阻尼的半线性演化方程的指数从藤田型指数到它的移动","authors":"","doi":"10.1007/s00030-023-00909-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we derive suitable optimal <span> <span>\\(L^p-L^q\\)</span> </span> decay estimates, <span> <span>\\(1\\le p\\le 2\\le q\\le \\infty \\)</span> </span>, for the solutions to the <span> <span>\\(\\sigma \\)</span> </span>-evolution equation, <span> <span>\\(\\sigma >1\\)</span> </span>, with scale-invariant time-dependent damping and power nonlinearity <span> <span>\\(|u|^p\\)</span> </span>, <span> <span>$$\\begin{aligned} u_{tt}+(-\\Delta )^\\sigma u + \\frac{\\mu }{1+t} u_t= |u|^{p}, \\quad t\\ge 0, \\quad x\\in {{\\mathbb {R}}}^n, \\end{aligned}$$</span> </span>where <span> <span>\\(\\mu >0\\)</span> </span>, <span> <span>\\(p>1\\)</span> </span>. The critical exponent <span> <span>\\(p=p_c\\)</span> </span> for the global (in time) existence of small data solutions to the Cauchy problem is related to the long time behavior of solutions, which changes accordingly <span> <span>\\(\\mu \\in (0, 1)\\)</span> </span> or <span> <span>\\(\\mu >1\\)</span> </span>. Under the assumption of small initial data in <span> <span>\\(L^m({{\\mathbb {R}}}^n)\\cap L^2({{\\mathbb {R}}}^n), m=1,2\\)</span> </span>, we find the critical exponent at low space dimension <em>n</em> with respect to <span> <span>\\(\\sigma \\)</span> </span>, namely, <span> <span>$$\\begin{aligned} p_c= \\max \\left\\{ {{\\bar{p}}}(\\gamma _{m}), {{\\bar{p}}} (\\gamma _{m}+\\mu -1) \\right\\} , \\quad \\gamma _{m}{\\mathrm {\\,:=\\,}}\\frac{n}{m\\sigma }, \\quad \\mu >1-\\gamma _m, \\end{aligned}$$</span> </span>where <span> <span>\\( {{\\bar{p}}}(\\gamma ){\\mathrm {\\,:=\\,}}1+ \\frac{2}{\\gamma }\\)</span> </span> is the well known Fujita exponent. Hence, <span> <span>\\(p_c={{\\bar{p}}}(\\gamma _{m})\\)</span> </span> if <span> <span>\\(\\mu >1\\)</span> </span>, whereas <span> <span>\\(p_c={{\\bar{p}}} (\\gamma _{m}+\\mu -1)\\)</span> </span> is a shift of Fujita type exponent if <span> <span>\\(\\mu \\in (0, 1)\\)</span> </span>.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping\",\"authors\":\"\",\"doi\":\"10.1007/s00030-023-00909-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, we derive suitable optimal <span> <span>\\\\(L^p-L^q\\\\)</span> </span> decay estimates, <span> <span>\\\\(1\\\\le p\\\\le 2\\\\le q\\\\le \\\\infty \\\\)</span> </span>, for the solutions to the <span> <span>\\\\(\\\\sigma \\\\)</span> </span>-evolution equation, <span> <span>\\\\(\\\\sigma >1\\\\)</span> </span>, with scale-invariant time-dependent damping and power nonlinearity <span> <span>\\\\(|u|^p\\\\)</span> </span>, <span> <span>$$\\\\begin{aligned} u_{tt}+(-\\\\Delta )^\\\\sigma u + \\\\frac{\\\\mu }{1+t} u_t= |u|^{p}, \\\\quad t\\\\ge 0, \\\\quad x\\\\in {{\\\\mathbb {R}}}^n, \\\\end{aligned}$$</span> </span>where <span> <span>\\\\(\\\\mu >0\\\\)</span> </span>, <span> <span>\\\\(p>1\\\\)</span> </span>. The critical exponent <span> <span>\\\\(p=p_c\\\\)</span> </span> for the global (in time) existence of small data solutions to the Cauchy problem is related to the long time behavior of solutions, which changes accordingly <span> <span>\\\\(\\\\mu \\\\in (0, 1)\\\\)</span> </span> or <span> <span>\\\\(\\\\mu >1\\\\)</span> </span>. Under the assumption of small initial data in <span> <span>\\\\(L^m({{\\\\mathbb {R}}}^n)\\\\cap L^2({{\\\\mathbb {R}}}^n), m=1,2\\\\)</span> </span>, we find the critical exponent at low space dimension <em>n</em> with respect to <span> <span>\\\\(\\\\sigma \\\\)</span> </span>, namely, <span> <span>$$\\\\begin{aligned} p_c= \\\\max \\\\left\\\\{ {{\\\\bar{p}}}(\\\\gamma _{m}), {{\\\\bar{p}}} (\\\\gamma _{m}+\\\\mu -1) \\\\right\\\\} , \\\\quad \\\\gamma _{m}{\\\\mathrm {\\\\,:=\\\\,}}\\\\frac{n}{m\\\\sigma }, \\\\quad \\\\mu >1-\\\\gamma _m, \\\\end{aligned}$$</span> </span>where <span> <span>\\\\( {{\\\\bar{p}}}(\\\\gamma ){\\\\mathrm {\\\\,:=\\\\,}}1+ \\\\frac{2}{\\\\gamma }\\\\)</span> </span> is the well known Fujita exponent. Hence, <span> <span>\\\\(p_c={{\\\\bar{p}}}(\\\\gamma _{m})\\\\)</span> </span> if <span> <span>\\\\(\\\\mu >1\\\\)</span> </span>, whereas <span> <span>\\\\(p_c={{\\\\bar{p}}} (\\\\gamma _{m}+\\\\mu -1)\\\\)</span> </span> is a shift of Fujita type exponent if <span> <span>\\\\(\\\\mu \\\\in (0, 1)\\\\)</span> </span>.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-023-00909-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00909-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping
Abstract
In this paper, we derive suitable optimal \(L^p-L^q\) decay estimates, \(1\le p\le 2\le q\le \infty \), for the solutions to the \(\sigma \)-evolution equation, \(\sigma >1\), with scale-invariant time-dependent damping and power nonlinearity \(|u|^p\), $$\begin{aligned} u_{tt}+(-\Delta )^\sigma u + \frac{\mu }{1+t} u_t= |u|^{p}, \quad t\ge 0, \quad x\in {{\mathbb {R}}}^n, \end{aligned}$$where \(\mu >0\), \(p>1\). The critical exponent \(p=p_c\) for the global (in time) existence of small data solutions to the Cauchy problem is related to the long time behavior of solutions, which changes accordingly \(\mu \in (0, 1)\) or \(\mu >1\). Under the assumption of small initial data in \(L^m({{\mathbb {R}}}^n)\cap L^2({{\mathbb {R}}}^n), m=1,2\), we find the critical exponent at low space dimension n with respect to \(\sigma \), namely, $$\begin{aligned} p_c= \max \left\{ {{\bar{p}}}(\gamma _{m}), {{\bar{p}}} (\gamma _{m}+\mu -1) \right\} , \quad \gamma _{m}{\mathrm {\,:=\,}}\frac{n}{m\sigma }, \quad \mu >1-\gamma _m, \end{aligned}$$where \( {{\bar{p}}}(\gamma ){\mathrm {\,:=\,}}1+ \frac{2}{\gamma }\) is the well known Fujita exponent. Hence, \(p_c={{\bar{p}}}(\gamma _{m})\) if \(\mu >1\), whereas \(p_c={{\bar{p}}} (\gamma _{m}+\mu -1)\) is a shift of Fujita type exponent if \(\mu \in (0, 1)\).