Teng Li, Xin Li, Haifeng Yang, Yu Zhou, Xiaowei Li, Mingru Su, Aichun Dou, Panpan Zhang, Xianwen Wu, Ahmad Naveed, Joy Sumner, Yunjian Liu
{"title":"通过无毒氟化物保护层的空间设计实现无树枝状和耐腐蚀锌阳极的多功能优化","authors":"Teng Li, Xin Li, Haifeng Yang, Yu Zhou, Xiaowei Li, Mingru Su, Aichun Dou, Panpan Zhang, Xianwen Wu, Ahmad Naveed, Joy Sumner, Yunjian Liu","doi":"10.1016/j.mtener.2024.101513","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc-ion batteries (AZIBs) are among those of focus in the research realm of next-generation electric energy storage, benefiting from their intrinsic safety, high volumetric capacity and low cost. Nonetheless, the problems of lifespan and reversibility caused by dendrites, hydrogen evolution and corrosion reactions restrict the large-scale commercialization of AZIBs. Herein, a multifunctional strategy has been explored in this research, of which the porous submicron-CaF<sub>2</sub> layer with uniform channels is applied to the zinc anode by employing a straightforward, low-cost method. Moreover, the submicron-CaF<sub>2</sub> coating can provide abundant submicron channels, restricting the free diffusion of Zn<sup>2+</sup> and effectively preventing the growth of zinc dendrites. Additionally, a series of characterizations reveal that the Zn@CaF<sub>2</sub> anode has a high cycle reversibility due to the marked suppression of the corrosion and hydrogen evolution reactions provided for the desolvation effects of CaF<sub>2</sub>. Consequently, the Zn@CaF<sub>2</sub> symmetrical cell afforded a long cycling lifespan for more than 1850 h at 1 mA cm<sup>-2</sup>. Importantly, even at a high current of 8 mA cm<sup>-2</sup>, the symmetrical cell can stably maintain for 2000 cycles. As a proof of the strategy, the entire Zn@CaF<sub>2</sub>//Zn<sub>3</sub>V<sub>2</sub>O<sub>8</sub>∙1.85H<sub>2</sub>O cell outperformed the full cell with bare Zn anode through superior capacity retention.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"53 11 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Optimization Enabled by the Space Design of a Non-Toxic Fluoride Protective Layer for Dendrites-Free and Corrosion-Resistance Zinc Anodes\",\"authors\":\"Teng Li, Xin Li, Haifeng Yang, Yu Zhou, Xiaowei Li, Mingru Su, Aichun Dou, Panpan Zhang, Xianwen Wu, Ahmad Naveed, Joy Sumner, Yunjian Liu\",\"doi\":\"10.1016/j.mtener.2024.101513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aqueous zinc-ion batteries (AZIBs) are among those of focus in the research realm of next-generation electric energy storage, benefiting from their intrinsic safety, high volumetric capacity and low cost. Nonetheless, the problems of lifespan and reversibility caused by dendrites, hydrogen evolution and corrosion reactions restrict the large-scale commercialization of AZIBs. Herein, a multifunctional strategy has been explored in this research, of which the porous submicron-CaF<sub>2</sub> layer with uniform channels is applied to the zinc anode by employing a straightforward, low-cost method. Moreover, the submicron-CaF<sub>2</sub> coating can provide abundant submicron channels, restricting the free diffusion of Zn<sup>2+</sup> and effectively preventing the growth of zinc dendrites. Additionally, a series of characterizations reveal that the Zn@CaF<sub>2</sub> anode has a high cycle reversibility due to the marked suppression of the corrosion and hydrogen evolution reactions provided for the desolvation effects of CaF<sub>2</sub>. Consequently, the Zn@CaF<sub>2</sub> symmetrical cell afforded a long cycling lifespan for more than 1850 h at 1 mA cm<sup>-2</sup>. Importantly, even at a high current of 8 mA cm<sup>-2</sup>, the symmetrical cell can stably maintain for 2000 cycles. As a proof of the strategy, the entire Zn@CaF<sub>2</sub>//Zn<sub>3</sub>V<sub>2</sub>O<sub>8</sub>∙1.85H<sub>2</sub>O cell outperformed the full cell with bare Zn anode through superior capacity retention.</p>\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":\"53 11 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101513\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101513","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Multifunctional Optimization Enabled by the Space Design of a Non-Toxic Fluoride Protective Layer for Dendrites-Free and Corrosion-Resistance Zinc Anodes
Aqueous zinc-ion batteries (AZIBs) are among those of focus in the research realm of next-generation electric energy storage, benefiting from their intrinsic safety, high volumetric capacity and low cost. Nonetheless, the problems of lifespan and reversibility caused by dendrites, hydrogen evolution and corrosion reactions restrict the large-scale commercialization of AZIBs. Herein, a multifunctional strategy has been explored in this research, of which the porous submicron-CaF2 layer with uniform channels is applied to the zinc anode by employing a straightforward, low-cost method. Moreover, the submicron-CaF2 coating can provide abundant submicron channels, restricting the free diffusion of Zn2+ and effectively preventing the growth of zinc dendrites. Additionally, a series of characterizations reveal that the Zn@CaF2 anode has a high cycle reversibility due to the marked suppression of the corrosion and hydrogen evolution reactions provided for the desolvation effects of CaF2. Consequently, the Zn@CaF2 symmetrical cell afforded a long cycling lifespan for more than 1850 h at 1 mA cm-2. Importantly, even at a high current of 8 mA cm-2, the symmetrical cell can stably maintain for 2000 cycles. As a proof of the strategy, the entire Zn@CaF2//Zn3V2O8∙1.85H2O cell outperformed the full cell with bare Zn anode through superior capacity retention.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials