Fatih Tok, İlayda Rumeysa Bayrak, Elif Karakaraman, İrem Soysal, Cansel Çakır, Kübra Tuna, Serap Yılmaz Özgüven, Yusuf Sıcak, Mehmet Öztürk, Bedia Koçyiğit-Kaymakçıoğlu
{"title":"一些新型 3,5-二取代-1-苯基-4,5-二氢-1H-吡唑衍生物的合成、表征、分子对接研究和生物学评价","authors":"Fatih Tok, İlayda Rumeysa Bayrak, Elif Karakaraman, İrem Soysal, Cansel Çakır, Kübra Tuna, Serap Yılmaz Özgüven, Yusuf Sıcak, Mehmet Öztürk, Bedia Koçyiğit-Kaymakçıoğlu","doi":"10.2174/0113852728287379231229102847","DOIUrl":null,"url":null,"abstract":": In this study, some new pyrazoline derivatives bearing cyano or nitro groups were synthesized. The structures of the compounds were characterized by IR, 1H-NMR, 13C-NMR and elemental analysis data. The ABTS·+, DPPH·, CUPRAC and β-Carotene/linoleic acid assays were carried out to determine the antioxidant activity of the synthesized pyrazolines. Compound P14 showed higher antioxidant activity than the standard substance BHA with IC50 values of 1.71±0.31 μM and 0.29±0.04 μM in ABTS+ and β-carotene/linoleic acid assays, respectively. Compound P12 also exhibited higher antioxidant activities than BHA with an IC50 value of 0.36±0.14 μM in β-carotene/linoleic acid analysis. In activity studies of pyrazolines against cholinesterase (AChE and BChE), tyrosinase, α-amylase and α- glucosidase, compound P1 (IC50 = 39.51±3.80 μM) showed higher activity against α-amylase and compounds P5 and P12 displayed higher activity against α-glucosidase than acarbose with IC50 values of 14.09±0.62 and 83.26±2.57 μM, respectively. The drug-like properties such as Lipinski and Veber, bioavailability and toxicity risks of the synthesized compounds were also evaluated. The compounds were predicted to be compatible with Lipinski and Veber rules, have high bioavailability and low toxicity profiles. Moreover, molecular docking studies were performed to better understand the high activity of the compounds against a-amylase and a-glucosidase enzymes.","PeriodicalId":10926,"journal":{"name":"Current Organic Chemistry","volume":"146 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, Characterization, Molecular Docking Studies and Biological Evaluation of Some Novel 3,5-disubstituted-1-phenyl-4,5-dihydro-1H-pyrazole Derivatives\",\"authors\":\"Fatih Tok, İlayda Rumeysa Bayrak, Elif Karakaraman, İrem Soysal, Cansel Çakır, Kübra Tuna, Serap Yılmaz Özgüven, Yusuf Sıcak, Mehmet Öztürk, Bedia Koçyiğit-Kaymakçıoğlu\",\"doi\":\"10.2174/0113852728287379231229102847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In this study, some new pyrazoline derivatives bearing cyano or nitro groups were synthesized. The structures of the compounds were characterized by IR, 1H-NMR, 13C-NMR and elemental analysis data. The ABTS·+, DPPH·, CUPRAC and β-Carotene/linoleic acid assays were carried out to determine the antioxidant activity of the synthesized pyrazolines. Compound P14 showed higher antioxidant activity than the standard substance BHA with IC50 values of 1.71±0.31 μM and 0.29±0.04 μM in ABTS+ and β-carotene/linoleic acid assays, respectively. Compound P12 also exhibited higher antioxidant activities than BHA with an IC50 value of 0.36±0.14 μM in β-carotene/linoleic acid analysis. In activity studies of pyrazolines against cholinesterase (AChE and BChE), tyrosinase, α-amylase and α- glucosidase, compound P1 (IC50 = 39.51±3.80 μM) showed higher activity against α-amylase and compounds P5 and P12 displayed higher activity against α-glucosidase than acarbose with IC50 values of 14.09±0.62 and 83.26±2.57 μM, respectively. The drug-like properties such as Lipinski and Veber, bioavailability and toxicity risks of the synthesized compounds were also evaluated. The compounds were predicted to be compatible with Lipinski and Veber rules, have high bioavailability and low toxicity profiles. Moreover, molecular docking studies were performed to better understand the high activity of the compounds against a-amylase and a-glucosidase enzymes.\",\"PeriodicalId\":10926,\"journal\":{\"name\":\"Current Organic Chemistry\",\"volume\":\"146 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0113852728287379231229102847\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0113852728287379231229102847","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Synthesis, Characterization, Molecular Docking Studies and Biological Evaluation of Some Novel 3,5-disubstituted-1-phenyl-4,5-dihydro-1H-pyrazole Derivatives
: In this study, some new pyrazoline derivatives bearing cyano or nitro groups were synthesized. The structures of the compounds were characterized by IR, 1H-NMR, 13C-NMR and elemental analysis data. The ABTS·+, DPPH·, CUPRAC and β-Carotene/linoleic acid assays were carried out to determine the antioxidant activity of the synthesized pyrazolines. Compound P14 showed higher antioxidant activity than the standard substance BHA with IC50 values of 1.71±0.31 μM and 0.29±0.04 μM in ABTS+ and β-carotene/linoleic acid assays, respectively. Compound P12 also exhibited higher antioxidant activities than BHA with an IC50 value of 0.36±0.14 μM in β-carotene/linoleic acid analysis. In activity studies of pyrazolines against cholinesterase (AChE and BChE), tyrosinase, α-amylase and α- glucosidase, compound P1 (IC50 = 39.51±3.80 μM) showed higher activity against α-amylase and compounds P5 and P12 displayed higher activity against α-glucosidase than acarbose with IC50 values of 14.09±0.62 and 83.26±2.57 μM, respectively. The drug-like properties such as Lipinski and Veber, bioavailability and toxicity risks of the synthesized compounds were also evaluated. The compounds were predicted to be compatible with Lipinski and Veber rules, have high bioavailability and low toxicity profiles. Moreover, molecular docking studies were performed to better understand the high activity of the compounds against a-amylase and a-glucosidase enzymes.
期刊介绍:
Current Organic Chemistry aims to provide in-depth/mini reviews on the current progress in various fields related to organic chemistry including bioorganic chemistry, organo-metallic chemistry, asymmetric synthesis, heterocyclic chemistry, natural product chemistry, catalytic and green chemistry, suitable aspects of medicinal chemistry and polymer chemistry, as well as analytical methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by chosen experts who are internationally known for their eminent research contributions. The Journal also accepts high quality research papers focusing on hot topics, highlights and letters besides thematic issues in these fields. Current Organic Chemistry should prove to be of great interest to organic chemists in academia and industry, who wish to keep abreast with recent developments in key fields of organic chemistry.