具有分数型噪声的自回归过程中的快速渐近有效估计

Pub Date : 2024-01-23 DOI:10.1016/j.jspi.2024.106148
Samir Ben Hariz , Alexandre Brouste , Chunhao Cai , Marius Soltane
{"title":"具有分数型噪声的自回归过程中的快速渐近有效估计","authors":"Samir Ben Hariz ,&nbsp;Alexandre Brouste ,&nbsp;Chunhao Cai ,&nbsp;Marius Soltane","doi":"10.1016/j.jspi.2024.106148","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers the joint estimation of the parameters of a first-order fractional autoregressive model. A one-step procedure is considered in order to obtain an asymptotically-efficient estimator with an initial guess estimator with convergence speed lower than <span><math><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span> and singular asymptotic joint distribution. This estimator is computed faster than the maximum likelihood estimator or the Whittle estimator and therefore allows for faster inference on large samples. The paper also illustrates the performance of this method on finite-size samples via Monte Carlo simulations.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and asymptotically-efficient estimation in an autoregressive process with fractional type noise\",\"authors\":\"Samir Ben Hariz ,&nbsp;Alexandre Brouste ,&nbsp;Chunhao Cai ,&nbsp;Marius Soltane\",\"doi\":\"10.1016/j.jspi.2024.106148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper considers the joint estimation of the parameters of a first-order fractional autoregressive model. A one-step procedure is considered in order to obtain an asymptotically-efficient estimator with an initial guess estimator with convergence speed lower than <span><math><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span> and singular asymptotic joint distribution. This estimator is computed faster than the maximum likelihood estimator or the Whittle estimator and therefore allows for faster inference on large samples. The paper also illustrates the performance of this method on finite-size samples via Monte Carlo simulations.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一阶分数自回归模型参数的联合估计。为了得到一个渐近有效的估计器,本文考虑了一个一步程序,该程序具有收敛速度小于 n 的初始猜测估计器和奇异的渐近联合分布。该估计器的计算速度比最大似然估计器或惠特尔估计器更快,因此可以更快地进行大样本推断。论文还通过蒙特卡罗模拟说明了这种方法在有限大小样本上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Fast and asymptotically-efficient estimation in an autoregressive process with fractional type noise

This paper considers the joint estimation of the parameters of a first-order fractional autoregressive model. A one-step procedure is considered in order to obtain an asymptotically-efficient estimator with an initial guess estimator with convergence speed lower than n and singular asymptotic joint distribution. This estimator is computed faster than the maximum likelihood estimator or the Whittle estimator and therefore allows for faster inference on large samples. The paper also illustrates the performance of this method on finite-size samples via Monte Carlo simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信