{"title":"MicroRNA-21 在心血管疾病中的双重作用综述:风险因素或潜在治疗靶点","authors":"Amir Masoud Jafari-Nozad, Negin Rostami, Melika Esmaeili, Haniye Vahdati, Serajoddin Hosseini, Tahereh Farkhondeh, Saeed Samarghandian","doi":"10.2174/0118761429287057240116040703","DOIUrl":null,"url":null,"abstract":": Cardiovascular diseases [CVD] are the number one reason for morbidity and mortality in the modern world, and their incidence is increasing at an incredible pace. Increasing evidence has shown the significant functions of microRNAs in the cardiovascular system and has highlighted their potential application as a new era of diagnostic and therapeutic targets for CVD that can improve the prognosis and life expectancy of patients. Among more than 2,000 microRNAs, microRNA-21 [miR-21] is highly expressed in human hearts and has earned the interest of researchers as a potential biomarker in a wide range of common heart conditions. Here, we summarized recent research progress regarding the significant role of miR-21 in CVD, focusing on cardiotoxicity, heart arrhythmias, cardiomyopathies, and hypertension. Several signaling pathways [TGF-β1/Smad2 signaling, FGFR1/FGF21/PPARγ, NF-κB/miR-21/SMAD7, miR-21/SPRY1/ERK/mTOR …] and molecular targets [BTG2, PDCD4, PTEN, STAT3…] were reported to be controlled, at least partially, by miR-21 and are linked to CVD pathogenesis. Most investigations highlighted miR-21 cardioprotective functions in heart injury, while some other studies showed that this miR is elevated in the serum/tissue of patients, promoting fibrosis and cardiac dysfunction. This dual role can be explained by the fact that miR-21 has multiple regulatory functions depending on the microenvironment, downstream signaling, and target genes, which indicates that cell-type-specific investigations should receive more attention. With further investigations, miR-21 can be considered a novel tailored therapy with favorable outcomes.","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"12 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of the Dual Role of MicroRNA-21 in Cardiovascular Diseases: Risk Factor or a Potential Therapeutic Target\",\"authors\":\"Amir Masoud Jafari-Nozad, Negin Rostami, Melika Esmaeili, Haniye Vahdati, Serajoddin Hosseini, Tahereh Farkhondeh, Saeed Samarghandian\",\"doi\":\"10.2174/0118761429287057240116040703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Cardiovascular diseases [CVD] are the number one reason for morbidity and mortality in the modern world, and their incidence is increasing at an incredible pace. Increasing evidence has shown the significant functions of microRNAs in the cardiovascular system and has highlighted their potential application as a new era of diagnostic and therapeutic targets for CVD that can improve the prognosis and life expectancy of patients. Among more than 2,000 microRNAs, microRNA-21 [miR-21] is highly expressed in human hearts and has earned the interest of researchers as a potential biomarker in a wide range of common heart conditions. Here, we summarized recent research progress regarding the significant role of miR-21 in CVD, focusing on cardiotoxicity, heart arrhythmias, cardiomyopathies, and hypertension. Several signaling pathways [TGF-β1/Smad2 signaling, FGFR1/FGF21/PPARγ, NF-κB/miR-21/SMAD7, miR-21/SPRY1/ERK/mTOR …] and molecular targets [BTG2, PDCD4, PTEN, STAT3…] were reported to be controlled, at least partially, by miR-21 and are linked to CVD pathogenesis. Most investigations highlighted miR-21 cardioprotective functions in heart injury, while some other studies showed that this miR is elevated in the serum/tissue of patients, promoting fibrosis and cardiac dysfunction. This dual role can be explained by the fact that miR-21 has multiple regulatory functions depending on the microenvironment, downstream signaling, and target genes, which indicates that cell-type-specific investigations should receive more attention. With further investigations, miR-21 can be considered a novel tailored therapy with favorable outcomes.\",\"PeriodicalId\":10865,\"journal\":{\"name\":\"Current molecular pharmacology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular pharmacology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0118761429287057240116040703\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular pharmacology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0118761429287057240116040703","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A Review of the Dual Role of MicroRNA-21 in Cardiovascular Diseases: Risk Factor or a Potential Therapeutic Target
: Cardiovascular diseases [CVD] are the number one reason for morbidity and mortality in the modern world, and their incidence is increasing at an incredible pace. Increasing evidence has shown the significant functions of microRNAs in the cardiovascular system and has highlighted their potential application as a new era of diagnostic and therapeutic targets for CVD that can improve the prognosis and life expectancy of patients. Among more than 2,000 microRNAs, microRNA-21 [miR-21] is highly expressed in human hearts and has earned the interest of researchers as a potential biomarker in a wide range of common heart conditions. Here, we summarized recent research progress regarding the significant role of miR-21 in CVD, focusing on cardiotoxicity, heart arrhythmias, cardiomyopathies, and hypertension. Several signaling pathways [TGF-β1/Smad2 signaling, FGFR1/FGF21/PPARγ, NF-κB/miR-21/SMAD7, miR-21/SPRY1/ERK/mTOR …] and molecular targets [BTG2, PDCD4, PTEN, STAT3…] were reported to be controlled, at least partially, by miR-21 and are linked to CVD pathogenesis. Most investigations highlighted miR-21 cardioprotective functions in heart injury, while some other studies showed that this miR is elevated in the serum/tissue of patients, promoting fibrosis and cardiac dysfunction. This dual role can be explained by the fact that miR-21 has multiple regulatory functions depending on the microenvironment, downstream signaling, and target genes, which indicates that cell-type-specific investigations should receive more attention. With further investigations, miR-21 can be considered a novel tailored therapy with favorable outcomes.
期刊介绍:
Current Molecular Pharmacology aims to publish the latest developments in cellular and molecular pharmacology with a major emphasis on the mechanism of action of novel drugs under development, innovative pharmacological technologies, cell signaling, transduction pathway analysis, genomics, proteomics, and metabonomics applications to drug action. An additional focus will be the way in which normal biological function is illuminated by knowledge of the action of drugs at the cellular and molecular level. The journal publishes full-length/mini reviews, original research articles and thematic issues on molecular pharmacology.
Current Molecular Pharmacology is an essential journal for every scientist who is involved in drug design and discovery, target identification, target validation, preclinical and clinical development of drugs therapeutically useful in human disease.