能量衍生物的莱维驱动 OU 过程的快速通用模拟

Roberto Baviera, Pietro Manzoni
{"title":"能量衍生物的莱维驱动 OU 过程的快速通用模拟","authors":"Roberto Baviera, Pietro Manzoni","doi":"arxiv-2401.15483","DOIUrl":null,"url":null,"abstract":"L\\'evy-driven Ornstein-Uhlenbeck (OU) processes represent an intriguing class\nof stochastic processes that have garnered interest in the energy sector for\ntheir ability to capture typical features of market dynamics. However, in the\ncurrent state-of-the-art, Monte Carlo simulations of these processes are not\nstraightforward for two main reasons: i) algorithms are available only for some\nparticular processes within this class; ii) they are often computationally\nexpensive. In this paper, we introduce a new simulation technique designed to\naddress both challenges. It relies on the numerical inversion of the\ncharacteristic function, offering a general methodology applicable to all\nL\\'evy-driven OU processes. Moreover, leveraging FFT, the proposed methodology\nensures fast and accurate simulations, providing a solid basis for the\nwidespread adoption of these processes in the energy sector. Lastly, the\nalgorithm allows an optimal control of the numerical error. We apply the\ntechnique to the pricing of energy derivatives, comparing the results with\nexisting benchmarks. Our findings indicate that the proposed methodology is at\nleast one order of magnitude faster than existing algorithms, all while\nmaintaining an equivalent level of accuracy.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and General Simulation of Lévy-driven OU processes for Energy Derivatives\",\"authors\":\"Roberto Baviera, Pietro Manzoni\",\"doi\":\"arxiv-2401.15483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"L\\\\'evy-driven Ornstein-Uhlenbeck (OU) processes represent an intriguing class\\nof stochastic processes that have garnered interest in the energy sector for\\ntheir ability to capture typical features of market dynamics. However, in the\\ncurrent state-of-the-art, Monte Carlo simulations of these processes are not\\nstraightforward for two main reasons: i) algorithms are available only for some\\nparticular processes within this class; ii) they are often computationally\\nexpensive. In this paper, we introduce a new simulation technique designed to\\naddress both challenges. It relies on the numerical inversion of the\\ncharacteristic function, offering a general methodology applicable to all\\nL\\\\'evy-driven OU processes. Moreover, leveraging FFT, the proposed methodology\\nensures fast and accurate simulations, providing a solid basis for the\\nwidespread adoption of these processes in the energy sector. Lastly, the\\nalgorithm allows an optimal control of the numerical error. We apply the\\ntechnique to the pricing of energy derivatives, comparing the results with\\nexisting benchmarks. Our findings indicate that the proposed methodology is at\\nleast one order of magnitude faster than existing algorithms, all while\\nmaintaining an equivalent level of accuracy.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.15483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.15483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

L\'evy-driven Ornstein-Uhlenbeck (OU) 过程是一类引人入胜的随机过程,因其能够捕捉市场动态的典型特征而在能源领域备受关注。然而,在当前最先进的技术中,这些过程的蒙特卡罗模拟并不直接,主要原因有两个:i) 算法仅适用于该类过程中的某些特定过程;ii) 通常计算成本较高。在本文中,我们介绍了一种新的模拟技术,旨在解决这两个难题。它依赖于特征函数的数值反演,提供了一种适用于所有 L'evy-driven OU 过程的通用方法。此外,利用 FFT,所提出的方法确保了快速准确的模拟,为这些过程在能源领域的广泛应用提供了坚实的基础。最后,该算法允许对数值误差进行优化控制。我们将该技术应用于能源衍生品的定价,并将结果与现有基准进行比较。我们的研究结果表明,所提出的方法比现有算法至少快一个数量级,同时还能保持同等的精度水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and General Simulation of Lévy-driven OU processes for Energy Derivatives
L\'evy-driven Ornstein-Uhlenbeck (OU) processes represent an intriguing class of stochastic processes that have garnered interest in the energy sector for their ability to capture typical features of market dynamics. However, in the current state-of-the-art, Monte Carlo simulations of these processes are not straightforward for two main reasons: i) algorithms are available only for some particular processes within this class; ii) they are often computationally expensive. In this paper, we introduce a new simulation technique designed to address both challenges. It relies on the numerical inversion of the characteristic function, offering a general methodology applicable to all L\'evy-driven OU processes. Moreover, leveraging FFT, the proposed methodology ensures fast and accurate simulations, providing a solid basis for the widespread adoption of these processes in the energy sector. Lastly, the algorithm allows an optimal control of the numerical error. We apply the technique to the pricing of energy derivatives, comparing the results with existing benchmarks. Our findings indicate that the proposed methodology is at least one order of magnitude faster than existing algorithms, all while maintaining an equivalent level of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信