日本中部盛崎组早中新世深海化石的磁层年代测定

IF 1 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY
Island Arc Pub Date : 2024-01-29 DOI:10.1111/iar.12513
Hiroyuki Hoshi, Akari Matsunaga
{"title":"日本中部盛崎组早中新世深海化石的磁层年代测定","authors":"Hiroyuki Hoshi,&nbsp;Akari Matsunaga","doi":"10.1111/iar.12513","DOIUrl":null,"url":null,"abstract":"<p>Early Miocene sediments of the Morozaki Group in central Japan contain deep-sea fossils that have been dated using biostratigraphic and radiometric data. In this study, we utilize magnetostratigraphy to provide a more precise age for mudstones from just below the layer containing the fossils. Rock magnetic experiments suggest that both magnetic iron sulfide and Ti-poor titanomagnetite carry the remanent magnetization of the mudstones. Two different stratigraphic sites have normal polarity directions with a northeastern declination, which can be correlated with Chronozone C5Dn. Given their magnetostratigraphic position near the C5Dn/C5Dr chronozone boundary (17.466 Ma) and a high sedimentation rate, the estimated age for both the sites and the deep-sea fossils is ~17.4 Ma. The northeasterly-directed site-mean directions suggest clockwise tectonic rotation, most likely due to the Early Miocene clockwise rotation of Southwest Japan associated with the back-arc opening of the Japan Sea. The deep-sea fossils, dated at ~17.4 Ma, represent organisms deposited within a submarine structural depression formed by crustal extension during the back-arc opening stage.</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":"33 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetostratigraphic dating of Early Miocene deep-sea fossils from the Morozaki Group in central Japan\",\"authors\":\"Hiroyuki Hoshi,&nbsp;Akari Matsunaga\",\"doi\":\"10.1111/iar.12513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Early Miocene sediments of the Morozaki Group in central Japan contain deep-sea fossils that have been dated using biostratigraphic and radiometric data. In this study, we utilize magnetostratigraphy to provide a more precise age for mudstones from just below the layer containing the fossils. Rock magnetic experiments suggest that both magnetic iron sulfide and Ti-poor titanomagnetite carry the remanent magnetization of the mudstones. Two different stratigraphic sites have normal polarity directions with a northeastern declination, which can be correlated with Chronozone C5Dn. Given their magnetostratigraphic position near the C5Dn/C5Dr chronozone boundary (17.466 Ma) and a high sedimentation rate, the estimated age for both the sites and the deep-sea fossils is ~17.4 Ma. The northeasterly-directed site-mean directions suggest clockwise tectonic rotation, most likely due to the Early Miocene clockwise rotation of Southwest Japan associated with the back-arc opening of the Japan Sea. The deep-sea fossils, dated at ~17.4 Ma, represent organisms deposited within a submarine structural depression formed by crustal extension during the back-arc opening stage.</p>\",\"PeriodicalId\":14791,\"journal\":{\"name\":\"Island Arc\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Island Arc\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/iar.12513\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.12513","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

日本中部的盛崎组早中新世沉积物中含有深海化石,这些化石的年代是通过生物地层学和辐射测量数据确定的。在这项研究中,我们利用磁地层学为含化石层下的泥岩提供了更精确的年代。岩石磁性实验表明,磁性硫化铁和贫钛磁铁矿都携带着泥岩的剩磁。两个不同的地层点具有东北偏角的正极性方向,可与时空带 C5Dn 相关联。鉴于它们的磁地层位置靠近 C5Dn/C5Dr 时带边界(17.466Ma),且沉积速率较高,这两个地点和深海化石的估计年龄约为 17.4Ma。东北向的遗址平均方向表明顺时针构造旋转,这很可能是由于早中新世日本西南部顺时针旋转与日本海的后弧开口有关。深海化石的年代约为 17.4 Ma,代表了沉积在弧后开裂阶段地壳延伸形成的海底构造凹陷中的生物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetostratigraphic dating of Early Miocene deep-sea fossils from the Morozaki Group in central Japan

Early Miocene sediments of the Morozaki Group in central Japan contain deep-sea fossils that have been dated using biostratigraphic and radiometric data. In this study, we utilize magnetostratigraphy to provide a more precise age for mudstones from just below the layer containing the fossils. Rock magnetic experiments suggest that both magnetic iron sulfide and Ti-poor titanomagnetite carry the remanent magnetization of the mudstones. Two different stratigraphic sites have normal polarity directions with a northeastern declination, which can be correlated with Chronozone C5Dn. Given their magnetostratigraphic position near the C5Dn/C5Dr chronozone boundary (17.466 Ma) and a high sedimentation rate, the estimated age for both the sites and the deep-sea fossils is ~17.4 Ma. The northeasterly-directed site-mean directions suggest clockwise tectonic rotation, most likely due to the Early Miocene clockwise rotation of Southwest Japan associated with the back-arc opening of the Japan Sea. The deep-sea fossils, dated at ~17.4 Ma, represent organisms deposited within a submarine structural depression formed by crustal extension during the back-arc opening stage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Island Arc
Island Arc 地学-地球科学综合
CiteScore
2.90
自引率
26.70%
发文量
32
审稿时长
>12 weeks
期刊介绍: Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication. Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信