{"title":"基于用例和专家访谈评估用于持续流程的 BPMN 扩展","authors":"Diana Strutzenberger, Juergen Mangler, Stefanie Rinderle-Ma","doi":"10.1007/s12599-023-00850-7","DOIUrl":null,"url":null,"abstract":"<p>The majority of (business) processes described in literature are discrete, i.e., they result in an identifiable and distinct outcome such as a settled customer claim or a produced part. However, there also exists a plethora of processes in process and control engineering that are continuous, i.e., processes that require real-time control systems with constant inlet and outlet flows as well as temporally stable conditions. Examples comprise chemical synthesis and combustion processes. Despite their prevalence and relevance a standard method for modeling continuous processes with BPMN is missing. Hence, the paper provides BPMN modeling extensions for continuous processes enabling an exact definition of the parameters and loop conditions as well as a mapping to executable processes. The BPMN modeling extensions are evaluated based on selected use cases from process and control engineering and interviews with experts from three groups, i.e., process engineers and two groups of process modelers, one with experience in industrial processes and one without. The results from the expert interviews are intended to identify (i) the key characteristics for the representation of continuous processes, (ii) how experts evaluate the current usability and comprehensibility of BPMN for continuous processes, and (iii) potential improvements can be identified regarding the introduced BPMN modeling extensions.</p>","PeriodicalId":55296,"journal":{"name":"Business & Information Systems Engineering","volume":"153 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating BPMN Extensions for Continuous Processes Based on Use Cases and Expert Interviews\",\"authors\":\"Diana Strutzenberger, Juergen Mangler, Stefanie Rinderle-Ma\",\"doi\":\"10.1007/s12599-023-00850-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The majority of (business) processes described in literature are discrete, i.e., they result in an identifiable and distinct outcome such as a settled customer claim or a produced part. However, there also exists a plethora of processes in process and control engineering that are continuous, i.e., processes that require real-time control systems with constant inlet and outlet flows as well as temporally stable conditions. Examples comprise chemical synthesis and combustion processes. Despite their prevalence and relevance a standard method for modeling continuous processes with BPMN is missing. Hence, the paper provides BPMN modeling extensions for continuous processes enabling an exact definition of the parameters and loop conditions as well as a mapping to executable processes. The BPMN modeling extensions are evaluated based on selected use cases from process and control engineering and interviews with experts from three groups, i.e., process engineers and two groups of process modelers, one with experience in industrial processes and one without. The results from the expert interviews are intended to identify (i) the key characteristics for the representation of continuous processes, (ii) how experts evaluate the current usability and comprehensibility of BPMN for continuous processes, and (iii) potential improvements can be identified regarding the introduced BPMN modeling extensions.</p>\",\"PeriodicalId\":55296,\"journal\":{\"name\":\"Business & Information Systems Engineering\",\"volume\":\"153 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Business & Information Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12599-023-00850-7\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Business & Information Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12599-023-00850-7","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Evaluating BPMN Extensions for Continuous Processes Based on Use Cases and Expert Interviews
The majority of (business) processes described in literature are discrete, i.e., they result in an identifiable and distinct outcome such as a settled customer claim or a produced part. However, there also exists a plethora of processes in process and control engineering that are continuous, i.e., processes that require real-time control systems with constant inlet and outlet flows as well as temporally stable conditions. Examples comprise chemical synthesis and combustion processes. Despite their prevalence and relevance a standard method for modeling continuous processes with BPMN is missing. Hence, the paper provides BPMN modeling extensions for continuous processes enabling an exact definition of the parameters and loop conditions as well as a mapping to executable processes. The BPMN modeling extensions are evaluated based on selected use cases from process and control engineering and interviews with experts from three groups, i.e., process engineers and two groups of process modelers, one with experience in industrial processes and one without. The results from the expert interviews are intended to identify (i) the key characteristics for the representation of continuous processes, (ii) how experts evaluate the current usability and comprehensibility of BPMN for continuous processes, and (iii) potential improvements can be identified regarding the introduced BPMN modeling extensions.
期刊介绍:
BISE (Business & Information Systems Engineering) is an international scholarly journal that undergoes double-blind peer review. It publishes scientific research on the effective and efficient design and utilization of information systems by individuals, groups, enterprises, and society to enhance social welfare. Information systems are viewed as socio-technical systems involving tasks, people, and technology. Research in the journal addresses issues in the analysis, design, implementation, and management of information systems.