{"title":"磁场和化学反应对多孔介质中受牛顿加热的空气、水和电解质流体的非稳态对流传热和传质影响的近似解析解","authors":"M. Sulemana, Y. I. Seini, O. D. Makinde","doi":"10.1155/2024/4519487","DOIUrl":null,"url":null,"abstract":"This paper addresses the unsteady hydrodynamic convective heat and mass transfer of three fluids namely air, water, and electrolyte solution past an impulsively started vertical surface with Newtonian heating in a porous medium under the influences of magnetic field and chemical reaction. Suitable dimensionless parameters are used to transform the flow equations and the approximate analytic method employed to solve the flow problem. The results are illustrated graphically for the velocity, temperature, and concentration profiles. Though, low Prandtl numbers produce high-thermal boundary layer thickness, however, as a novelty, the presence of the magnetic field delayed the convection motion hence, the thermal boundary layer thickness is greater for water with high <i>P</i><sub><i>r</i></sub> = 7.0 as compared to air with low <i>P</i><sub><i>r</i></sub> = 0.71 and electrolyte solution with low <i>P</i><sub><i>r</i></sub> = 1.0. Practically, water with a high-Prandtl number can effectively absorb and release heat. This makes water useful in applications such as geothermal heat pumps and solar thermal collectors, industrial processes such as chemical reactions, distillation, and drying, and in oceanography in predicting the movement and behavior of ocean currents, which in turn can impact weather patterns and climate. Another major observation from the study is that the rate of cooling associated with air, water, or electrolyte impacts differently on the product being cooled.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Analytical Solution of the Influences of Magnetic Field and Chemical Reaction on Unsteady Convective Heat and Mass Transfer of Air, Water, and Electrolyte Fluids Subject to Newtonian Heating in a Porous Medium\",\"authors\":\"M. Sulemana, Y. I. Seini, O. D. Makinde\",\"doi\":\"10.1155/2024/4519487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the unsteady hydrodynamic convective heat and mass transfer of three fluids namely air, water, and electrolyte solution past an impulsively started vertical surface with Newtonian heating in a porous medium under the influences of magnetic field and chemical reaction. Suitable dimensionless parameters are used to transform the flow equations and the approximate analytic method employed to solve the flow problem. The results are illustrated graphically for the velocity, temperature, and concentration profiles. Though, low Prandtl numbers produce high-thermal boundary layer thickness, however, as a novelty, the presence of the magnetic field delayed the convection motion hence, the thermal boundary layer thickness is greater for water with high <i>P</i><sub><i>r</i></sub> = 7.0 as compared to air with low <i>P</i><sub><i>r</i></sub> = 0.71 and electrolyte solution with low <i>P</i><sub><i>r</i></sub> = 1.0. Practically, water with a high-Prandtl number can effectively absorb and release heat. This makes water useful in applications such as geothermal heat pumps and solar thermal collectors, industrial processes such as chemical reactions, distillation, and drying, and in oceanography in predicting the movement and behavior of ocean currents, which in turn can impact weather patterns and climate. Another major observation from the study is that the rate of cooling associated with air, water, or electrolyte impacts differently on the product being cooled.\",\"PeriodicalId\":49111,\"journal\":{\"name\":\"Advances in Mathematical Physics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/4519487\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2024/4519487","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Approximate Analytical Solution of the Influences of Magnetic Field and Chemical Reaction on Unsteady Convective Heat and Mass Transfer of Air, Water, and Electrolyte Fluids Subject to Newtonian Heating in a Porous Medium
This paper addresses the unsteady hydrodynamic convective heat and mass transfer of three fluids namely air, water, and electrolyte solution past an impulsively started vertical surface with Newtonian heating in a porous medium under the influences of magnetic field and chemical reaction. Suitable dimensionless parameters are used to transform the flow equations and the approximate analytic method employed to solve the flow problem. The results are illustrated graphically for the velocity, temperature, and concentration profiles. Though, low Prandtl numbers produce high-thermal boundary layer thickness, however, as a novelty, the presence of the magnetic field delayed the convection motion hence, the thermal boundary layer thickness is greater for water with high Pr = 7.0 as compared to air with low Pr = 0.71 and electrolyte solution with low Pr = 1.0. Practically, water with a high-Prandtl number can effectively absorb and release heat. This makes water useful in applications such as geothermal heat pumps and solar thermal collectors, industrial processes such as chemical reactions, distillation, and drying, and in oceanography in predicting the movement and behavior of ocean currents, which in turn can impact weather patterns and climate. Another major observation from the study is that the rate of cooling associated with air, water, or electrolyte impacts differently on the product being cooled.
期刊介绍:
Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike.
As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.