{"title":"固定场交变梯度加速器的重离子注入","authors":"Yujiro Yonemura, Hidehiko Arima, Hiroki Nishibata, Takashi Teranishi, Tomotsugu Wakasa, Nobuo Ikeda, Kenichi Watanabe, Nobuhiro Shigyo, Tatsunori Iwamura, Kyosuke Adachi, Koki Takamatsu, Motoki Kotani, Hisato Tanaka, Rintaro Matsunaga, Taichi Matsumoto, Kyohei Takenaka, Takafumi Kajihara, Sotaro Matsunaga, Yusuke Shinohara, Yoshiharu Mori","doi":"10.1093/ptep/ptae017","DOIUrl":null,"url":null,"abstract":"Much research in recent years has focused on circular accelerators that accelerate and store secondary particles with a large momentum spread, such as muons, unstable nuclei and heavy ions with different charge states. A fixed field alternating gradient (FFAG) accelerator with large transverse and momentum acceptance has obvious advantages for such requirements. A versatile beam injection method is required to accelerate secondary particles with a large momentum spread and different charge states with an FFAG accelerator. In the present study, a method for charge exchange injection of positive heavy ions using the large momentum acceptance of an FFAG accelerator is proposed. A charge injection system, which converts a He1 + beam to a He2 + beam, is developed for a 150 MeV FFAG accelerator at the Center for Accelerator and Beam Applied Science (CABAS) of Kyushu University. As the first step to verify the injection method, orbits shift from one charge state to the other is demonstrated. This is the first demonstration of heavy ion injection using an FFAG accelerator.","PeriodicalId":20710,"journal":{"name":"Progress of Theoretical and Experimental Physics","volume":"9 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heavy ion injection of fixed-field alternating gradient accelerator\",\"authors\":\"Yujiro Yonemura, Hidehiko Arima, Hiroki Nishibata, Takashi Teranishi, Tomotsugu Wakasa, Nobuo Ikeda, Kenichi Watanabe, Nobuhiro Shigyo, Tatsunori Iwamura, Kyosuke Adachi, Koki Takamatsu, Motoki Kotani, Hisato Tanaka, Rintaro Matsunaga, Taichi Matsumoto, Kyohei Takenaka, Takafumi Kajihara, Sotaro Matsunaga, Yusuke Shinohara, Yoshiharu Mori\",\"doi\":\"10.1093/ptep/ptae017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Much research in recent years has focused on circular accelerators that accelerate and store secondary particles with a large momentum spread, such as muons, unstable nuclei and heavy ions with different charge states. A fixed field alternating gradient (FFAG) accelerator with large transverse and momentum acceptance has obvious advantages for such requirements. A versatile beam injection method is required to accelerate secondary particles with a large momentum spread and different charge states with an FFAG accelerator. In the present study, a method for charge exchange injection of positive heavy ions using the large momentum acceptance of an FFAG accelerator is proposed. A charge injection system, which converts a He1 + beam to a He2 + beam, is developed for a 150 MeV FFAG accelerator at the Center for Accelerator and Beam Applied Science (CABAS) of Kyushu University. As the first step to verify the injection method, orbits shift from one charge state to the other is demonstrated. This is the first demonstration of heavy ion injection using an FFAG accelerator.\",\"PeriodicalId\":20710,\"journal\":{\"name\":\"Progress of Theoretical and Experimental Physics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress of Theoretical and Experimental Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/ptep/ptae017\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical and Experimental Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae017","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Heavy ion injection of fixed-field alternating gradient accelerator
Much research in recent years has focused on circular accelerators that accelerate and store secondary particles with a large momentum spread, such as muons, unstable nuclei and heavy ions with different charge states. A fixed field alternating gradient (FFAG) accelerator with large transverse and momentum acceptance has obvious advantages for such requirements. A versatile beam injection method is required to accelerate secondary particles with a large momentum spread and different charge states with an FFAG accelerator. In the present study, a method for charge exchange injection of positive heavy ions using the large momentum acceptance of an FFAG accelerator is proposed. A charge injection system, which converts a He1 + beam to a He2 + beam, is developed for a 150 MeV FFAG accelerator at the Center for Accelerator and Beam Applied Science (CABAS) of Kyushu University. As the first step to verify the injection method, orbits shift from one charge state to the other is demonstrated. This is the first demonstration of heavy ion injection using an FFAG accelerator.
期刊介绍:
Progress of Theoretical and Experimental Physics (PTEP) is an international journal that publishes articles on theoretical and experimental physics. PTEP is a fully open access, online-only journal published by the Physical Society of Japan.
PTEP is the successor to Progress of Theoretical Physics (PTP), which terminated in December 2012 and merged into PTEP in January 2013.
PTP was founded in 1946 by Hideki Yukawa, the first Japanese Nobel Laureate. PTEP, the successor journal to PTP, has a broader scope than that of PTP covering both theoretical and experimental physics.
PTEP mainly covers areas including particles and fields, nuclear physics, astrophysics and cosmology, beam physics and instrumentation, and general and mathematical physics.