{"title":"无限对称群的最大子群","authors":"SUZANA MENDES-GONÇALVES, R. P. SULLIVAN","doi":"10.1017/s0004972723001375","DOIUrl":null,"url":null,"abstract":"Brazil <jats:italic>et al</jats:italic>. [‘Maximal subgroups of infinite symmetric groups’, <jats:italic>Proc. Lond. Math. Soc. (3)</jats:italic>68(1) (1994), 77–111] provided a new family of maximal subgroups of the symmetric group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001375_inline1.png\" /> <jats:tex-math> $G(X)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> defined on an infinite set <jats:italic>X</jats:italic>. It is easy to see that, in this case, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001375_inline2.png\" /> <jats:tex-math> $G(X)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contains subsemigroups that are not groups, but nothing is known about nongroup maximal subsemigroups of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001375_inline3.png\" /> <jats:tex-math> $G(X)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We provide infinitely many examples of such semigroups.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MAXIMAL SUBSEMIGROUPS OF INFINITE SYMMETRIC GROUPS\",\"authors\":\"SUZANA MENDES-GONÇALVES, R. P. SULLIVAN\",\"doi\":\"10.1017/s0004972723001375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brazil <jats:italic>et al</jats:italic>. [‘Maximal subgroups of infinite symmetric groups’, <jats:italic>Proc. Lond. Math. Soc. (3)</jats:italic>68(1) (1994), 77–111] provided a new family of maximal subgroups of the symmetric group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001375_inline1.png\\\" /> <jats:tex-math> $G(X)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> defined on an infinite set <jats:italic>X</jats:italic>. It is easy to see that, in this case, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001375_inline2.png\\\" /> <jats:tex-math> $G(X)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contains subsemigroups that are not groups, but nothing is known about nongroup maximal subsemigroups of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001375_inline3.png\\\" /> <jats:tex-math> $G(X)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We provide infinitely many examples of such semigroups.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723001375\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001375","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Brazil et al. ['Maximal subgroups of infinite symmetric groups', Proc.Lond.Math.(3)68(1) (1994), 77-111] 提供了定义在无限集 X 上的对称群 $G(X)$ 的最大子群的新族。我们提供了无限多此类半群的例子。
MAXIMAL SUBSEMIGROUPS OF INFINITE SYMMETRIC GROUPS
Brazil et al. [‘Maximal subgroups of infinite symmetric groups’, Proc. Lond. Math. Soc. (3)68(1) (1994), 77–111] provided a new family of maximal subgroups of the symmetric group $G(X)$ defined on an infinite set X. It is easy to see that, in this case, $G(X)$ contains subsemigroups that are not groups, but nothing is known about nongroup maximal subsemigroups of $G(X)$ . We provide infinitely many examples of such semigroups.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society