{"title":"非线性为零的-拉普拉斯方程的多重解","authors":"SHIBO LIU","doi":"10.1017/s0004972723001405","DOIUrl":null,"url":null,"abstract":"We consider the Dirichlet problem for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_inline2.png\" /> <jats:tex-math> $p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Laplacian equations of the form <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_eqnu1.png\" /> <jats:tex-math> $$ \\begin{align*} -\\Delta_{p(x)}u+b(x)\\vert u\\vert ^{p(x)-2}u=f(x,u),\\quad u\\in W_{0}^{1,p(x)}(\\Omega). \\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> The odd nonlinearity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_inline3.png\" /> <jats:tex-math> $f(x,u)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_inline4.png\" /> <jats:tex-math> $p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-sublinear at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_inline5.png\" /> <jats:tex-math> $u=0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> but the related limit need not be uniform for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_inline6.png\" /> <jats:tex-math> $x\\in \\Omega $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Except being subcritical, no additional assumption is imposed on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_inline7.png\" /> <jats:tex-math> $f(x,u)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_inline8.png\" /> <jats:tex-math> $|u|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> large. By applying Clark’s theorem and a truncation method, we obtain a sequence of solutions with negative energy and approaching the zero function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001405_inline9.png\" /> <jats:tex-math> $u=0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"44 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MULTIPLE SOLUTIONS FOR -LAPLACIAN EQUATIONS WITH NONLINEARITY SUBLINEAR AT ZERO\",\"authors\":\"SHIBO LIU\",\"doi\":\"10.1017/s0004972723001405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Dirichlet problem for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001405_inline2.png\\\" /> <jats:tex-math> $p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Laplacian equations of the form <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001405_eqnu1.png\\\" /> <jats:tex-math> $$ \\\\begin{align*} -\\\\Delta_{p(x)}u+b(x)\\\\vert u\\\\vert ^{p(x)-2}u=f(x,u),\\\\quad u\\\\in W_{0}^{1,p(x)}(\\\\Omega). \\\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> The odd nonlinearity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001405_inline3.png\\\" /> <jats:tex-math> $f(x,u)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001405_inline4.png\\\" /> <jats:tex-math> $p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-sublinear at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001405_inline5.png\\\" /> <jats:tex-math> $u=0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> but the related limit need not be uniform for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001405_inline6.png\\\" /> <jats:tex-math> $x\\\\in \\\\Omega $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Except being subcritical, no additional assumption is imposed on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001405_inline7.png\\\" /> <jats:tex-math> $f(x,u)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001405_inline8.png\\\" /> <jats:tex-math> $|u|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> large. By applying Clark’s theorem and a truncation method, we obtain a sequence of solutions with negative energy and approaching the zero function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001405_inline9.png\\\" /> <jats:tex-math> $u=0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723001405\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001405","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
MULTIPLE SOLUTIONS FOR -LAPLACIAN EQUATIONS WITH NONLINEARITY SUBLINEAR AT ZERO
We consider the Dirichlet problem for $p(x)$ -Laplacian equations of the form $$ \begin{align*} -\Delta_{p(x)}u+b(x)\vert u\vert ^{p(x)-2}u=f(x,u),\quad u\in W_{0}^{1,p(x)}(\Omega). \end{align*} $$ The odd nonlinearity $f(x,u)$ is $p(x)$ -sublinear at $u=0$ but the related limit need not be uniform for $x\in \Omega $ . Except being subcritical, no additional assumption is imposed on $f(x,u)$ for $|u|$ large. By applying Clark’s theorem and a truncation method, we obtain a sequence of solutions with negative energy and approaching the zero function $u=0$ .
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society