Guangjun Cui, Jin Liao, Linghua Kong, Cuiying Zhou, Zhen Liu, Lei Yu, Lihai Zhang
{"title":"红床的基本化学成分组合规则和定量标准","authors":"Guangjun Cui, Jin Liao, Linghua Kong, Cuiying Zhou, Zhen Liu, Lei Yu, Lihai Zhang","doi":"10.5194/egusphere-2023-2590","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Red beds belong to slippery formations, and their rapid identification is of great significance for major scientific and engineering issues such as geological hazard risk assessment and rapid response. Existing research often identifies red beds from a qualitative or semi quantitative perspective, resulting in slow recognition speed and inaccurate recognition results, making it difficult to quickly handle landslide geological disasters. Combined with the correlation between red beds geomorphic characteristics, mineral compositions, and chemical compositions, this study established a rapid quantitative identification criterion based on the basic chemical compositions combination rules in the red beds. By collecting chemical compositions data of rocks containing red beds, a total of 241,405 groups data were collected for qualitative and quantitative comparison between multiple sets of chemical composition combinations. The results indicate that simultaneously meeting the following chemical composition combinations can serve as a quantitative criterion for distinguishing red beds from other rocks: SiO<sub>2</sub>+Al<sub>2</sub>O<sub>3</sub> ≈ 50.7 %~85.0 %, Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> ≈ 0.14~0.41, FeO+Fe<sub>2</sub>O<sub>3</sub> ≈ 0.9 %~7.9 %, Fe<sub>2</sub>O<sub>3</sub>/FeO ≈ 1.52~7.70, K<sub>2</sub>O+Na<sub>2</sub>O ≈ 1.6 %~6.8 %, Na<sub>2</sub>O/K<sub>2</sub>O ≈ 0.02~0.43, CaO+MgO ≈ 0.8 %~9.2 %. By comparing the chemical composition combinations of 15 kinds of rocks collected from China in this study, it is proven that the quantitative criterion proposed in this study are effective.","PeriodicalId":21912,"journal":{"name":"Solid Earth","volume":"10 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Basic chemical compositions combination rules and quantitative criterion of red beds\",\"authors\":\"Guangjun Cui, Jin Liao, Linghua Kong, Cuiying Zhou, Zhen Liu, Lei Yu, Lihai Zhang\",\"doi\":\"10.5194/egusphere-2023-2590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Red beds belong to slippery formations, and their rapid identification is of great significance for major scientific and engineering issues such as geological hazard risk assessment and rapid response. Existing research often identifies red beds from a qualitative or semi quantitative perspective, resulting in slow recognition speed and inaccurate recognition results, making it difficult to quickly handle landslide geological disasters. Combined with the correlation between red beds geomorphic characteristics, mineral compositions, and chemical compositions, this study established a rapid quantitative identification criterion based on the basic chemical compositions combination rules in the red beds. By collecting chemical compositions data of rocks containing red beds, a total of 241,405 groups data were collected for qualitative and quantitative comparison between multiple sets of chemical composition combinations. The results indicate that simultaneously meeting the following chemical composition combinations can serve as a quantitative criterion for distinguishing red beds from other rocks: SiO<sub>2</sub>+Al<sub>2</sub>O<sub>3</sub> ≈ 50.7 %~85.0 %, Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> ≈ 0.14~0.41, FeO+Fe<sub>2</sub>O<sub>3</sub> ≈ 0.9 %~7.9 %, Fe<sub>2</sub>O<sub>3</sub>/FeO ≈ 1.52~7.70, K<sub>2</sub>O+Na<sub>2</sub>O ≈ 1.6 %~6.8 %, Na<sub>2</sub>O/K<sub>2</sub>O ≈ 0.02~0.43, CaO+MgO ≈ 0.8 %~9.2 %. By comparing the chemical composition combinations of 15 kinds of rocks collected from China in this study, it is proven that the quantitative criterion proposed in this study are effective.\",\"PeriodicalId\":21912,\"journal\":{\"name\":\"Solid Earth\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2023-2590\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2023-2590","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Basic chemical compositions combination rules and quantitative criterion of red beds
Abstract. Red beds belong to slippery formations, and their rapid identification is of great significance for major scientific and engineering issues such as geological hazard risk assessment and rapid response. Existing research often identifies red beds from a qualitative or semi quantitative perspective, resulting in slow recognition speed and inaccurate recognition results, making it difficult to quickly handle landslide geological disasters. Combined with the correlation between red beds geomorphic characteristics, mineral compositions, and chemical compositions, this study established a rapid quantitative identification criterion based on the basic chemical compositions combination rules in the red beds. By collecting chemical compositions data of rocks containing red beds, a total of 241,405 groups data were collected for qualitative and quantitative comparison between multiple sets of chemical composition combinations. The results indicate that simultaneously meeting the following chemical composition combinations can serve as a quantitative criterion for distinguishing red beds from other rocks: SiO2+Al2O3 ≈ 50.7 %~85.0 %, Al2O3/SiO2 ≈ 0.14~0.41, FeO+Fe2O3 ≈ 0.9 %~7.9 %, Fe2O3/FeO ≈ 1.52~7.70, K2O+Na2O ≈ 1.6 %~6.8 %, Na2O/K2O ≈ 0.02~0.43, CaO+MgO ≈ 0.8 %~9.2 %. By comparing the chemical composition combinations of 15 kinds of rocks collected from China in this study, it is proven that the quantitative criterion proposed in this study are effective.
期刊介绍:
Solid Earth (SE) is a not-for-profit journal that publishes multidisciplinary research on the composition, structure, dynamics of the Earth from the surface to the deep interior at all spatial and temporal scales. The journal invites contributions encompassing observational, experimental, and theoretical investigations in the form of short communications, research articles, method articles, review articles, and discussion and commentaries on all aspects of the solid Earth (for details see manuscript types). Being interdisciplinary in scope, SE covers the following disciplines:
geochemistry, mineralogy, petrology, volcanology;
geodesy and gravity;
geodynamics: numerical and analogue modeling of geoprocesses;
geoelectrics and electromagnetics;
geomagnetism;
geomorphology, morphotectonics, and paleoseismology;
rock physics;
seismics and seismology;
critical zone science (Earth''s permeable near-surface layer);
stratigraphy, sedimentology, and palaeontology;
rock deformation, structural geology, and tectonics.