关于紧凑流形上精确 G2 结构的评论

IF 0.6 4区 数学 Q3 MATHEMATICS
Aaron Kennon
{"title":"关于紧凑流形上精确 G2 结构的评论","authors":"Aaron Kennon","doi":"10.1016/j.difgeo.2023.102101","DOIUrl":null,"url":null,"abstract":"<div><p>An important open question related to the study of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-holonomy manifolds concerns whether or not a compact seven-manifold can support an exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure. To provide insight into this question, we identify various relationships between the two-form underlying an exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure, the torsion of the <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure, and the curvatures of the associated metric. In addition to establishing identities valid for any hypothetical exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure, we also consider exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures subject to additional constraints, for instance proving incompatibility between the exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span> and Extremally Ricci-Pinched conditions and establish new identities for soliton solutions of the Laplacian flow.</span></p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102101"},"PeriodicalIF":0.6000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on exact G2-structures on compact manifolds\",\"authors\":\"Aaron Kennon\",\"doi\":\"10.1016/j.difgeo.2023.102101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An important open question related to the study of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-holonomy manifolds concerns whether or not a compact seven-manifold can support an exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure. To provide insight into this question, we identify various relationships between the two-form underlying an exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure, the torsion of the <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure, and the curvatures of the associated metric. In addition to establishing identities valid for any hypothetical exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structure, we also consider exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-structures subject to additional constraints, for instance proving incompatibility between the exact <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span> and Extremally Ricci-Pinched conditions and establish new identities for soliton solutions of the Laplacian flow.</span></p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"93 \",\"pages\":\"Article 102101\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523001274\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523001274","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

与 G2-自治流形研究相关的一个重要未决问题是紧凑七芒星流形是否能够支持精确 G2 结构。为了深入探讨这个问题,我们确定了精确 G2 结构的二元形式、G2 结构的扭转和相关度量的曲率之间的各种关系。除了建立对任何假定的精确 G2 结构有效的同一性之外,我们还考虑了受额外约束的精确 G2 结构,例如证明了精确 G2 与极端里奇-夹角条件之间的不兼容性,并为拉普拉斯流的孤子解建立了新的同一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on exact G2-structures on compact manifolds

An important open question related to the study of G2-holonomy manifolds concerns whether or not a compact seven-manifold can support an exact G2-structure. To provide insight into this question, we identify various relationships between the two-form underlying an exact G2-structure, the torsion of the G2-structure, and the curvatures of the associated metric. In addition to establishing identities valid for any hypothetical exact G2-structure, we also consider exact G2-structures subject to additional constraints, for instance proving incompatibility between the exact G2 and Extremally Ricci-Pinched conditions and establish new identities for soliton solutions of the Laplacian flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信