论熵马丁格尔最优传输理论

IF 1.4 Q3 SOCIAL SCIENCES, MATHEMATICAL METHODS
{"title":"论熵马丁格尔最优传输理论","authors":"","doi":"10.1007/s10203-023-00432-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we give an overview of (nonlinear) pricing-hedging duality and of its connection with the theory of entropy martingale optimal transport (EMOT), recently developed, and that of convex risk measures. Similarly to Doldi and Frittelli (Finance Stoch 27(2):255–304, 2023), we here establish a duality result between a convex optimal transport and a utility maximization problem. Differently from Doldi and Frittelli (Finance Stoch 27(2):255–304, 2023), we provide here an alternative proof that is based on a compactness assumption. Subhedging and superhedging can be obtained as applications of the duality discussed above. Furthermore, we provide a dual representation of the generalized optimized certainty equivalent associated with indirect utility.</p>","PeriodicalId":43711,"journal":{"name":"Decisions in Economics and Finance","volume":"33 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On entropy martingale optimal transport theory\",\"authors\":\"\",\"doi\":\"10.1007/s10203-023-00432-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, we give an overview of (nonlinear) pricing-hedging duality and of its connection with the theory of entropy martingale optimal transport (EMOT), recently developed, and that of convex risk measures. Similarly to Doldi and Frittelli (Finance Stoch 27(2):255–304, 2023), we here establish a duality result between a convex optimal transport and a utility maximization problem. Differently from Doldi and Frittelli (Finance Stoch 27(2):255–304, 2023), we provide here an alternative proof that is based on a compactness assumption. Subhedging and superhedging can be obtained as applications of the duality discussed above. Furthermore, we provide a dual representation of the generalized optimized certainty equivalent associated with indirect utility.</p>\",\"PeriodicalId\":43711,\"journal\":{\"name\":\"Decisions in Economics and Finance\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decisions in Economics and Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10203-023-00432-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decisions in Economics and Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10203-023-00432-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文概述了(非线性)定价-套期保值对偶性及其与最近提出的熵马丁格尔最优传输(EMOT)理论和凸风险度量理论的联系。与 Doldi 和 Frittelli(《金融随机》27(2):255-304, 2023 年)类似,我们在此建立了凸最优传输与效用最大化问题之间的对偶性结果。与 Doldi 和 Frittelli(《金融随机》27(2):255-304, 2023 年)不同,我们在此提供了基于紧凑性假设的另一种证明。子对冲和超级对冲可以作为上述对偶性的应用而得到。此外,我们还提供了与间接效用相关的广义优化确定性等价物的对偶表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On entropy martingale optimal transport theory

Abstract

In this paper, we give an overview of (nonlinear) pricing-hedging duality and of its connection with the theory of entropy martingale optimal transport (EMOT), recently developed, and that of convex risk measures. Similarly to Doldi and Frittelli (Finance Stoch 27(2):255–304, 2023), we here establish a duality result between a convex optimal transport and a utility maximization problem. Differently from Doldi and Frittelli (Finance Stoch 27(2):255–304, 2023), we provide here an alternative proof that is based on a compactness assumption. Subhedging and superhedging can be obtained as applications of the duality discussed above. Furthermore, we provide a dual representation of the generalized optimized certainty equivalent associated with indirect utility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Decisions in Economics and Finance
Decisions in Economics and Finance SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
2.50
自引率
9.10%
发文量
10
期刊介绍: Decisions in Economics and Finance: A Journal of Applied Mathematics is the official publication of the Association for Mathematics Applied to Social and Economic Sciences (AMASES). It provides a specialised forum for the publication of research in all areas of mathematics as applied to economics, finance, insurance, management and social sciences. Primary emphasis is placed on original research concerning topics in mathematics or computational techniques which are explicitly motivated by or contribute to the analysis of economic or financial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信