太赫兹毛细管电泳(THz-CE)用于直接检测溶液中的分离物质

IF 2.8 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Keiko Kitagishi, Takayuki Kawai, Masayoshi Tonouchi, and Kazunori Serita
{"title":"太赫兹毛细管电泳(THz-CE)用于直接检测溶液中的分离物质","authors":"Keiko Kitagishi, Takayuki Kawai, Masayoshi Tonouchi, and Kazunori Serita","doi":"10.1364/ome.500594","DOIUrl":null,"url":null,"abstract":"We present a novel technique for capillary electrophoresis (CE) using terahertz (THz) waves, namely “THz-CE,” which enables us to sensitively detect separated substances in a solution flowing in a hollow of capillary whose inner diameter is smaller than 100 µm. Such THz detection could be achieved by utilizing the near-field interaction between a solution filled in a capillary and a point THz source that was locally generated by optical rectification in a nonlinear optical crystal irradiated with a femtosecond pulse laser. Here, we investigated the performance of THz-CE numerically and experimentally, and succeeded in observing the electrophoretic chromatogram for the separation between acetic acid and <i>n</i>-propionic acid by THz-CE.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"36 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terahertz-capillary electrophoresis (THz-CE) for direct detection of separated substances in solutions\",\"authors\":\"Keiko Kitagishi, Takayuki Kawai, Masayoshi Tonouchi, and Kazunori Serita\",\"doi\":\"10.1364/ome.500594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel technique for capillary electrophoresis (CE) using terahertz (THz) waves, namely “THz-CE,” which enables us to sensitively detect separated substances in a solution flowing in a hollow of capillary whose inner diameter is smaller than 100 µm. Such THz detection could be achieved by utilizing the near-field interaction between a solution filled in a capillary and a point THz source that was locally generated by optical rectification in a nonlinear optical crystal irradiated with a femtosecond pulse laser. Here, we investigated the performance of THz-CE numerically and experimentally, and succeeded in observing the electrophoretic chromatogram for the separation between acetic acid and <i>n</i>-propionic acid by THz-CE.\",\"PeriodicalId\":19548,\"journal\":{\"name\":\"Optical Materials Express\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1364/ome.500594\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.500594","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种利用太赫兹(THz)波进行毛细管电泳(CE)的新技术,即 "THz-CE",它使我们能够灵敏地检测在内径小于 100 微米的中空毛细管中流动的溶液中的分离物质。这种太赫兹检测可以通过利用毛细管中的溶液与点太赫兹源之间的近场相互作用来实现,点太赫兹源是通过飞秒脉冲激光照射非线性光学晶体中的光学整流局部产生的。在此,我们对 THz-CE 的性能进行了数值和实验研究,并成功观测了 THz-CE 分离醋酸和正丙酸的电泳色谱图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Terahertz-capillary electrophoresis (THz-CE) for direct detection of separated substances in solutions
We present a novel technique for capillary electrophoresis (CE) using terahertz (THz) waves, namely “THz-CE,” which enables us to sensitively detect separated substances in a solution flowing in a hollow of capillary whose inner diameter is smaller than 100 µm. Such THz detection could be achieved by utilizing the near-field interaction between a solution filled in a capillary and a point THz source that was locally generated by optical rectification in a nonlinear optical crystal irradiated with a femtosecond pulse laser. Here, we investigated the performance of THz-CE numerically and experimentally, and succeeded in observing the electrophoretic chromatogram for the separation between acetic acid and n-propionic acid by THz-CE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Materials Express
Optical Materials Express MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
5.50
自引率
3.60%
发文量
377
审稿时长
1.5 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to: Artificially engineered optical structures Biomaterials Optical detector materials Optical storage media Materials for integrated optics Nonlinear optical materials Laser materials Metamaterials Nanomaterials Organics and polymers Soft materials IR materials Materials for fiber optics Hybrid technologies Materials for quantum photonics Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信