Ekin Gunes Ozaktas, Sreyas Chintapalli, and Susanna M. Thon
{"title":"通过稳健的有效和等效介质模型提取超材料的光学参数","authors":"Ekin Gunes Ozaktas, Sreyas Chintapalli, and Susanna M. Thon","doi":"10.1364/ome.514897","DOIUrl":null,"url":null,"abstract":"Metamaterials are complex structured mixed-material systems with tailored physical properties that have found applications in a variety of optical and electronic technologies. New methods for homogenizing the optical properties of metamaterials are of increasing importance, both to study their exotic properties and because the simulation of these complex structures is computationally expensive. We propose a method to extract a homogeneous refractive index and wave impedance for inhomogeneous materials. We examine effective medium models, where inhomogeneities are subwavelength, and equivalent models where features are larger. Homogenization is only physically justified in the former; however, it is still useful in the latter if only the reflection, transmission, and absorption are of interest. We introduce a resolution of the branching problem in the Nicolson-Ross-Weir method that involves starting from the branch of the complex logarithm beginning with the minimum absolute mean derivative and then enforcing continuity, and also determine an effective thickness. We demonstrate the proposed method on patterned PbS colloidal quantum dot films in the form of disks and birefringent gratings. We conclude that effective models are Kramers-Kronig compliant, whereas equivalent models may not be. This work illuminates the difference between the two types of models, allowing for better analysis and interpretation of the optical properties of complex metamaterials.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"6 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical parameter extraction for metamaterials via robust effective and equivalent medium models\",\"authors\":\"Ekin Gunes Ozaktas, Sreyas Chintapalli, and Susanna M. Thon\",\"doi\":\"10.1364/ome.514897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metamaterials are complex structured mixed-material systems with tailored physical properties that have found applications in a variety of optical and electronic technologies. New methods for homogenizing the optical properties of metamaterials are of increasing importance, both to study their exotic properties and because the simulation of these complex structures is computationally expensive. We propose a method to extract a homogeneous refractive index and wave impedance for inhomogeneous materials. We examine effective medium models, where inhomogeneities are subwavelength, and equivalent models where features are larger. Homogenization is only physically justified in the former; however, it is still useful in the latter if only the reflection, transmission, and absorption are of interest. We introduce a resolution of the branching problem in the Nicolson-Ross-Weir method that involves starting from the branch of the complex logarithm beginning with the minimum absolute mean derivative and then enforcing continuity, and also determine an effective thickness. We demonstrate the proposed method on patterned PbS colloidal quantum dot films in the form of disks and birefringent gratings. We conclude that effective models are Kramers-Kronig compliant, whereas equivalent models may not be. This work illuminates the difference between the two types of models, allowing for better analysis and interpretation of the optical properties of complex metamaterials.\",\"PeriodicalId\":19548,\"journal\":{\"name\":\"Optical Materials Express\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1364/ome.514897\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.514897","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Optical parameter extraction for metamaterials via robust effective and equivalent medium models
Metamaterials are complex structured mixed-material systems with tailored physical properties that have found applications in a variety of optical and electronic technologies. New methods for homogenizing the optical properties of metamaterials are of increasing importance, both to study their exotic properties and because the simulation of these complex structures is computationally expensive. We propose a method to extract a homogeneous refractive index and wave impedance for inhomogeneous materials. We examine effective medium models, where inhomogeneities are subwavelength, and equivalent models where features are larger. Homogenization is only physically justified in the former; however, it is still useful in the latter if only the reflection, transmission, and absorption are of interest. We introduce a resolution of the branching problem in the Nicolson-Ross-Weir method that involves starting from the branch of the complex logarithm beginning with the minimum absolute mean derivative and then enforcing continuity, and also determine an effective thickness. We demonstrate the proposed method on patterned PbS colloidal quantum dot films in the form of disks and birefringent gratings. We conclude that effective models are Kramers-Kronig compliant, whereas equivalent models may not be. This work illuminates the difference between the two types of models, allowing for better analysis and interpretation of the optical properties of complex metamaterials.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to:
Artificially engineered optical structures
Biomaterials
Optical detector materials
Optical storage media
Materials for integrated optics
Nonlinear optical materials
Laser materials
Metamaterials
Nanomaterials
Organics and polymers
Soft materials
IR materials
Materials for fiber optics
Hybrid technologies
Materials for quantum photonics
Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.