论无常曲面同构的局部-全局原理

Davide Lombardo, Matteo Verzobio
{"title":"论无常曲面同构的局部-全局原理","authors":"Davide Lombardo, Matteo Verzobio","doi":"10.1007/s00029-023-00908-0","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\ell \\)</span> be a prime number. We classify the subgroups <i>G</i> of <span>\\({\\text {Sp}}_4({\\mathbb {F}}_\\ell )\\)</span> and <span>\\({\\text {GSp}}_4({\\mathbb {F}}_\\ell )\\)</span> that act irreducibly on <span>\\({\\mathbb {F}}_\\ell ^4\\)</span>, but such that every element of <i>G</i> fixes an <span>\\({\\mathbb {F}}_\\ell \\)</span>-vector subspace of dimension 1. We use this classification to prove that a local-global principle for isogenies of degree <span>\\(\\ell \\)</span> between abelian surfaces over number fields holds in many cases—in particular, whenever the abelian surface has non-trivial endomorphisms and <span>\\(\\ell \\)</span> is large enough with respect to the field of definition. Finally, we prove that there exist arbitrarily large primes <span>\\(\\ell \\)</span> for which some abelian surface <span>\\(A/{\\mathbb {Q}}\\)</span> fails the local-global principle for isogenies of degree <span>\\(\\ell \\)</span>.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the local-global principle for isogenies of abelian surfaces\",\"authors\":\"Davide Lombardo, Matteo Verzobio\",\"doi\":\"10.1007/s00029-023-00908-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\ell \\\\)</span> be a prime number. We classify the subgroups <i>G</i> of <span>\\\\({\\\\text {Sp}}_4({\\\\mathbb {F}}_\\\\ell )\\\\)</span> and <span>\\\\({\\\\text {GSp}}_4({\\\\mathbb {F}}_\\\\ell )\\\\)</span> that act irreducibly on <span>\\\\({\\\\mathbb {F}}_\\\\ell ^4\\\\)</span>, but such that every element of <i>G</i> fixes an <span>\\\\({\\\\mathbb {F}}_\\\\ell \\\\)</span>-vector subspace of dimension 1. We use this classification to prove that a local-global principle for isogenies of degree <span>\\\\(\\\\ell \\\\)</span> between abelian surfaces over number fields holds in many cases—in particular, whenever the abelian surface has non-trivial endomorphisms and <span>\\\\(\\\\ell \\\\)</span> is large enough with respect to the field of definition. Finally, we prove that there exist arbitrarily large primes <span>\\\\(\\\\ell \\\\)</span> for which some abelian surface <span>\\\\(A/{\\\\mathbb {Q}}\\\\)</span> fails the local-global principle for isogenies of degree <span>\\\\(\\\\ell \\\\)</span>.\\n</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-023-00908-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00908-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\ell \) 是一个素数。我们将不可还原地作用于 \({\mathbb {F}_ell ^4\)的 \({\text {Sp}}_4({\mathbb {F}_ell )\) 和 \({\text {GSp}}_4({\mathbb {F}_ell )\) 的子群 G 进行分类、)但这样 G 的每个元素都固定了一个维数为 1 的 \({\mathbb {F}_\ell \)-向量子空间。我们利用这个分类来证明,在很多情况下,数域上的无常曲面之间度数为 \(\ell \) 的同源性的局部-全局原则是成立的--特别是,只要无常曲面有非三维内定型,并且 \(\ell \) 相对于定义域足够大。最后,我们证明了存在任意大的素数 \(\ell \),对于这些素数,某个无常曲面 \(A/{\mathbb {Q}}\) 在度数 \(\ell \)的等元性上不符合局部-全局原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the local-global principle for isogenies of abelian surfaces

Let \(\ell \) be a prime number. We classify the subgroups G of \({\text {Sp}}_4({\mathbb {F}}_\ell )\) and \({\text {GSp}}_4({\mathbb {F}}_\ell )\) that act irreducibly on \({\mathbb {F}}_\ell ^4\), but such that every element of G fixes an \({\mathbb {F}}_\ell \)-vector subspace of dimension 1. We use this classification to prove that a local-global principle for isogenies of degree \(\ell \) between abelian surfaces over number fields holds in many cases—in particular, whenever the abelian surface has non-trivial endomorphisms and \(\ell \) is large enough with respect to the field of definition. Finally, we prove that there exist arbitrarily large primes \(\ell \) for which some abelian surface \(A/{\mathbb {Q}}\) fails the local-global principle for isogenies of degree \(\ell \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信