{"title":"四元组表示的张量积","authors":"Pradeep Das , Umesh V. Dubey , N. Raghavendra","doi":"10.1016/j.indag.2024.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we define the tensor product <span><math><mrow><mi>V</mi><mo>⊗</mo><mi>W</mi></mrow></math></span> of a representation <span><math><mi>V</mi></math></span> of a quiver <span><math><mi>Q</mi></math></span> with a representation <span><math><mi>W</mi></math></span> of an another quiver <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, and show that the representation <span><math><mrow><mi>V</mi><mo>⊗</mo><mi>W</mi></mrow></math></span> is semistable if <span><math><mi>V</mi></math></span> and <span><math><mi>W</mi></math></span> are semistable. We give a relation between the universal representations on the fine moduli spaces <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> and <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> of representations of <span><math><mrow><mi>Q</mi><mo>,</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> and <span><math><mrow><mi>Q</mi><mo>⊗</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span><span> respectively over arbitrary algebraically closed fields<span>. We further describe a relation between the natural line bundles on these moduli spaces when the base is the field of complex numbers. We then prove that the internal product </span></span><span><math><mrow><mover><mrow><mi>Q</mi></mrow><mrow><mo>̃</mo></mrow></mover><mo>⊗</mo><mover><mrow><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><mo>̃</mo></mrow></mover></mrow></math></span> of covering quivers is a sub-quiver of the covering quiver <span><math><mover><mrow><mi>Q</mi><mo>⊗</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><mo>˜</mo></mrow></mover></math></span>. We deduce the relation between stability of the representations <span><math><mover><mrow><mi>V</mi><mo>⊗</mo><mi>W</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> and <span><math><mrow><mover><mrow><mi>V</mi></mrow><mrow><mo>̃</mo></mrow></mover><mo>⊗</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow></math></span>, where <span><math><mover><mrow><mi>V</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span> denotes the lift of the representation <span><math><mi>V</mi></math></span> of <span><math><mi>Q</mi></math></span> to the covering quiver <span><math><mover><mrow><mi>Q</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span>. We also lift the relation between the natural line bundles on the product of moduli spaces <span><math><mrow><mover><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mo>̃</mo></mrow></mover><mo>×</mo><mover><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>̃</mo></mrow></mover></mrow></math></span>.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 2","pages":"Pages 329-349"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensor product of representations of quivers\",\"authors\":\"Pradeep Das , Umesh V. Dubey , N. Raghavendra\",\"doi\":\"10.1016/j.indag.2024.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we define the tensor product <span><math><mrow><mi>V</mi><mo>⊗</mo><mi>W</mi></mrow></math></span> of a representation <span><math><mi>V</mi></math></span> of a quiver <span><math><mi>Q</mi></math></span> with a representation <span><math><mi>W</mi></math></span> of an another quiver <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, and show that the representation <span><math><mrow><mi>V</mi><mo>⊗</mo><mi>W</mi></mrow></math></span> is semistable if <span><math><mi>V</mi></math></span> and <span><math><mi>W</mi></math></span> are semistable. We give a relation between the universal representations on the fine moduli spaces <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> and <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> of representations of <span><math><mrow><mi>Q</mi><mo>,</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> and <span><math><mrow><mi>Q</mi><mo>⊗</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span><span> respectively over arbitrary algebraically closed fields<span>. We further describe a relation between the natural line bundles on these moduli spaces when the base is the field of complex numbers. We then prove that the internal product </span></span><span><math><mrow><mover><mrow><mi>Q</mi></mrow><mrow><mo>̃</mo></mrow></mover><mo>⊗</mo><mover><mrow><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><mo>̃</mo></mrow></mover></mrow></math></span> of covering quivers is a sub-quiver of the covering quiver <span><math><mover><mrow><mi>Q</mi><mo>⊗</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><mo>˜</mo></mrow></mover></math></span>. We deduce the relation between stability of the representations <span><math><mover><mrow><mi>V</mi><mo>⊗</mo><mi>W</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> and <span><math><mrow><mover><mrow><mi>V</mi></mrow><mrow><mo>̃</mo></mrow></mover><mo>⊗</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow></math></span>, where <span><math><mover><mrow><mi>V</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span> denotes the lift of the representation <span><math><mi>V</mi></math></span> of <span><math><mi>Q</mi></math></span> to the covering quiver <span><math><mover><mrow><mi>Q</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span>. We also lift the relation between the natural line bundles on the product of moduli spaces <span><math><mrow><mover><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mo>̃</mo></mrow></mover><mo>×</mo><mover><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>̃</mo></mrow></mover></mrow></math></span>.</p></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"35 2\",\"pages\":\"Pages 329-349\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357724000041\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们定义了一个四元组 Q 的表示 V 与另一个四元组 Q′的表示 W 的张量积 V⊗W,并证明了如果 V 和 W 都是半可变的,则表示 V⊗W 是半可变的。我们给出了在任意代数闭域上 Q、Q′ 和 Q⊗Q′ 分别在精细模空间 N1、N2 和 N3 上的普遍表示之间的关系。我们进一步描述了当复数域为基时,这些模空间上的自然线束之间的关系。然后,我们证明覆盖阙的内积 Q̃⊗Q′̃ 是覆盖阙 Q⊗Q′˜ 的子阙。我们推导出表示 V⊗W˜和Ṽ⊗W̃的稳定性之间的关系,其中Ṽ表示 Q 的表示 V 到覆盖簇 Q̃ 的提升。我们还提升了模空间 N1̃×N2̃乘积上的自然线束之间的关系。
In this article, we define the tensor product of a representation of a quiver with a representation of an another quiver , and show that the representation is semistable if and are semistable. We give a relation between the universal representations on the fine moduli spaces and of representations of and respectively over arbitrary algebraically closed fields. We further describe a relation between the natural line bundles on these moduli spaces when the base is the field of complex numbers. We then prove that the internal product of covering quivers is a sub-quiver of the covering quiver . We deduce the relation between stability of the representations and , where denotes the lift of the representation of to the covering quiver . We also lift the relation between the natural line bundles on the product of moduli spaces .
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.