平衡分配的力量

IF 0.9 3区 数学 Q2 MATHEMATICS
Dimitrios Los, Thomas Sauerwald, John Sylvester
{"title":"平衡分配的力量","authors":"Dimitrios Los, Thomas Sauerwald, John Sylvester","doi":"10.1137/23m1552231","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 529-565, March 2024. <br/> Abstract. We introduce a new class of balanced allocation processes which are primarily characterized by “filling” underloaded bins. A prototypical example is the Packing process: At each round we only take one bin sample, and if the load is below the average load, then we place as many balls until the average load is reached; otherwise, we place only one ball. We prove that for any process in this class the gap between the maximum and average load is [math] w.h.p. for any number of balls [math]. For the Packing process, we also provide a matching lower bound. Additionally, we prove that the Packing process is sample efficient in the sense that the expected number of balls allocated per sample is strictly greater than one. Finally, we also demonstrate that the upper bound of [math] on the gap can be extended to the Memory process studied by Mitzenmacher, Prabhakar, and Shah [43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, BC, Canada, 2002, pp. 799–808].","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Power of Filling in Balanced Allocations\",\"authors\":\"Dimitrios Los, Thomas Sauerwald, John Sylvester\",\"doi\":\"10.1137/23m1552231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 529-565, March 2024. <br/> Abstract. We introduce a new class of balanced allocation processes which are primarily characterized by “filling” underloaded bins. A prototypical example is the Packing process: At each round we only take one bin sample, and if the load is below the average load, then we place as many balls until the average load is reached; otherwise, we place only one ball. We prove that for any process in this class the gap between the maximum and average load is [math] w.h.p. for any number of balls [math]. For the Packing process, we also provide a matching lower bound. Additionally, we prove that the Packing process is sample efficient in the sense that the expected number of balls allocated per sample is strictly greater than one. Finally, we also demonstrate that the upper bound of [math] on the gap can be extended to the Memory process studied by Mitzenmacher, Prabhakar, and Shah [43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, BC, Canada, 2002, pp. 799–808].\",\"PeriodicalId\":49530,\"journal\":{\"name\":\"SIAM Journal on Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1552231\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1552231","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 离散数学杂志》,第 38 卷,第 1 期,第 529-565 页,2024 年 3 月。 摘要我们引入了一类新的平衡分配过程,其主要特征是 "填充 "负载不足的箱。打包过程就是一个典型的例子:在每一轮中,我们只取一个仓的样本,如果负载低于平均负载,我们就放置尽可能多的球,直到达到平均负载为止;否则,我们只放置一个球。我们证明,对于本类中的任何一个过程,对于任何数量的球,最大负荷和平均负荷之间的差距都是 [math]w.h.p.[math]。对于打包过程,我们还提供了一个匹配的下限。此外,我们还证明了打包过程的样本效率,即每次样本分配的预期球数严格大于 1。最后,我们还证明了 [math] 关于间隙的上界可以扩展到 Mitzenmacher、Prabhakar 和 Shah 所研究的记忆过程[第 43 届 IEEE 计算机科学基础年度研讨会,加拿大不列颠哥伦比亚省温哥华,2002 年,第 799-808 页]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Power of Filling in Balanced Allocations
SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 529-565, March 2024.
Abstract. We introduce a new class of balanced allocation processes which are primarily characterized by “filling” underloaded bins. A prototypical example is the Packing process: At each round we only take one bin sample, and if the load is below the average load, then we place as many balls until the average load is reached; otherwise, we place only one ball. We prove that for any process in this class the gap between the maximum and average load is [math] w.h.p. for any number of balls [math]. For the Packing process, we also provide a matching lower bound. Additionally, we prove that the Packing process is sample efficient in the sense that the expected number of balls allocated per sample is strictly greater than one. Finally, we also demonstrate that the upper bound of [math] on the gap can be extended to the Memory process studied by Mitzenmacher, Prabhakar, and Shah [43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, BC, Canada, 2002, pp. 799–808].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution. Topics include but are not limited to: properties of and extremal problems for discrete structures combinatorial optimization, including approximation algorithms algebraic and enumerative combinatorics coding and information theory additive, analytic combinatorics and number theory combinatorial matrix theory and spectral graph theory design and analysis of algorithms for discrete structures discrete problems in computational complexity discrete and computational geometry discrete methods in computational biology, and bioinformatics probabilistic methods and randomized algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信