{"title":"利用自适应相位-振幅坐标框架对非线性振荡进行降阶表征","authors":"Dan Wilson, Kai Sun","doi":"10.1137/23m1551699","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 470-504, March 2024. <br/> Abstract. We propose a general strategy for reduced order modeling of systems that display highly nonlinear oscillations. By considering a continuous family of forced periodic orbits defined in relation to a stable fixed point and subsequently leveraging phase-amplitude-based reduction strategies, we arrive at a low order model capable of accurately capturing nonlinear oscillations resulting from arbitrary external inputs. In the limit that oscillations are small, the system dynamics relax to those obtained from local linearization, i.e., that can be fully described using linear eigenmodes. For larger amplitude oscillations, the behavior can be understood in terms of the dynamics of a small number of nonlinear modes. We illustrate the proposed strategy in a variety of examples yielding results that are substantially better than those obtained using standard linearization-based techniques.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"84 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced Order Characterization of Nonlinear Oscillations Using an Adaptive Phase-Amplitude Coordinate Framework\",\"authors\":\"Dan Wilson, Kai Sun\",\"doi\":\"10.1137/23m1551699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 470-504, March 2024. <br/> Abstract. We propose a general strategy for reduced order modeling of systems that display highly nonlinear oscillations. By considering a continuous family of forced periodic orbits defined in relation to a stable fixed point and subsequently leveraging phase-amplitude-based reduction strategies, we arrive at a low order model capable of accurately capturing nonlinear oscillations resulting from arbitrary external inputs. In the limit that oscillations are small, the system dynamics relax to those obtained from local linearization, i.e., that can be fully described using linear eigenmodes. For larger amplitude oscillations, the behavior can be understood in terms of the dynamics of a small number of nonlinear modes. We illustrate the proposed strategy in a variety of examples yielding results that are substantially better than those obtained using standard linearization-based techniques.\",\"PeriodicalId\":49534,\"journal\":{\"name\":\"SIAM Journal on Applied Dynamical Systems\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1551699\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1551699","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Reduced Order Characterization of Nonlinear Oscillations Using an Adaptive Phase-Amplitude Coordinate Framework
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 470-504, March 2024. Abstract. We propose a general strategy for reduced order modeling of systems that display highly nonlinear oscillations. By considering a continuous family of forced periodic orbits defined in relation to a stable fixed point and subsequently leveraging phase-amplitude-based reduction strategies, we arrive at a low order model capable of accurately capturing nonlinear oscillations resulting from arbitrary external inputs. In the limit that oscillations are small, the system dynamics relax to those obtained from local linearization, i.e., that can be fully described using linear eigenmodes. For larger amplitude oscillations, the behavior can be understood in terms of the dynamics of a small number of nonlinear modes. We illustrate the proposed strategy in a variety of examples yielding results that are substantially better than those obtained using standard linearization-based techniques.
期刊介绍:
SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.