Arpan Garg, Y.D. Sharma, Subit K. Jain, Sanjalee Maheshwari
{"title":"磁场和贯通流对含有陀螺仪微生物的福赫海默扩展达西-布林克曼多孔纳米流体层中开始热生物对流的影响的数值研究","authors":"Arpan Garg, Y.D. Sharma, Subit K. Jain, Sanjalee Maheshwari","doi":"10.1615/jpormedia.2024049980","DOIUrl":null,"url":null,"abstract":"This paper accommodates numerical investigation on the onset of magneto-thermo-bioconvection in nanofluid suspension of gyrotactic microbes saturated in a porous medium under the imposition of vertical throughflow and quadratic drag. The modified Darcy-Brinkman-Forchheimer model is utilized to drive the governing equations. The normal mode technique along with linear stability analysis is imposed to establish the agitated system of equations. An eight-order Galerkin methodology is utilized to numerically extract the critical thermal Rayleigh number values from the tedious eigenvalue problem. The power of vertical throughflow and quadratic drag is perceived to enhance the thermal energy transfer and stabilize the nanofluid suspension that consequently tries to restrict the convective process. The intensity of the magnetic field is identified to delay the onset of magneto-thermo-bioconvection. It is also found that the presence of fast-moving gyrotactic microorganisms and top-heavy nanofluid concentration form an unstable system to accelerate the beginning of the magneto-thermo-bioconvection. The outcome of this work may find applications in microfluidic devices, enhanced oil recovery, and many other areas for controlling the speed of the convective process.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study of the influence of magnetic field and throughflow on the onset of thermo-bio-convection in a Forchheimer‑extended Darcy-Brinkman porous nanofluid layer containing gyrotactic microorganisms\",\"authors\":\"Arpan Garg, Y.D. Sharma, Subit K. Jain, Sanjalee Maheshwari\",\"doi\":\"10.1615/jpormedia.2024049980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper accommodates numerical investigation on the onset of magneto-thermo-bioconvection in nanofluid suspension of gyrotactic microbes saturated in a porous medium under the imposition of vertical throughflow and quadratic drag. The modified Darcy-Brinkman-Forchheimer model is utilized to drive the governing equations. The normal mode technique along with linear stability analysis is imposed to establish the agitated system of equations. An eight-order Galerkin methodology is utilized to numerically extract the critical thermal Rayleigh number values from the tedious eigenvalue problem. The power of vertical throughflow and quadratic drag is perceived to enhance the thermal energy transfer and stabilize the nanofluid suspension that consequently tries to restrict the convective process. The intensity of the magnetic field is identified to delay the onset of magneto-thermo-bioconvection. It is also found that the presence of fast-moving gyrotactic microorganisms and top-heavy nanofluid concentration form an unstable system to accelerate the beginning of the magneto-thermo-bioconvection. The outcome of this work may find applications in microfluidic devices, enhanced oil recovery, and many other areas for controlling the speed of the convective process.\",\"PeriodicalId\":50082,\"journal\":{\"name\":\"Journal of Porous Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/jpormedia.2024049980\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Media","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/jpormedia.2024049980","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Numerical study of the influence of magnetic field and throughflow on the onset of thermo-bio-convection in a Forchheimer‑extended Darcy-Brinkman porous nanofluid layer containing gyrotactic microorganisms
This paper accommodates numerical investigation on the onset of magneto-thermo-bioconvection in nanofluid suspension of gyrotactic microbes saturated in a porous medium under the imposition of vertical throughflow and quadratic drag. The modified Darcy-Brinkman-Forchheimer model is utilized to drive the governing equations. The normal mode technique along with linear stability analysis is imposed to establish the agitated system of equations. An eight-order Galerkin methodology is utilized to numerically extract the critical thermal Rayleigh number values from the tedious eigenvalue problem. The power of vertical throughflow and quadratic drag is perceived to enhance the thermal energy transfer and stabilize the nanofluid suspension that consequently tries to restrict the convective process. The intensity of the magnetic field is identified to delay the onset of magneto-thermo-bioconvection. It is also found that the presence of fast-moving gyrotactic microorganisms and top-heavy nanofluid concentration form an unstable system to accelerate the beginning of the magneto-thermo-bioconvection. The outcome of this work may find applications in microfluidic devices, enhanced oil recovery, and many other areas for controlling the speed of the convective process.
期刊介绍:
The Journal of Porous Media publishes original full-length research articles (and technical notes) in a wide variety of areas related to porous media studies, such as mathematical modeling, numerical and experimental techniques, industrial and environmental heat and mass transfer, conduction, convection, radiation, particle transport and capillary effects, reactive flows, deformable porous media, biomedical applications, and mechanics of the porous substrate. Emphasis will be given to manuscripts that present novel findings pertinent to these areas. The journal will also consider publication of state-of-the-art reviews. Manuscripts applying known methods to previously solved problems or providing results in the absence of scientific motivation or application will not be accepted. Submitted articles should contribute to the understanding of specific scientific problems or to solution techniques that are useful in applications. Papers that link theory with computational practice to provide insight into the processes are welcome.