{"title":"立方体生成树的新计数法","authors":"Thomas W. Mattman","doi":"10.1007/s00373-023-02746-5","DOIUrl":null,"url":null,"abstract":"<p>Using the special value at <span>\\(u=1\\)</span> of the Artin-Ihara <i>L</i>-function, we give a short proof of the count of the number of spanning trees in the <i>n</i>-cube.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Count of the Spanning Trees of a Cube\",\"authors\":\"Thomas W. Mattman\",\"doi\":\"10.1007/s00373-023-02746-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using the special value at <span>\\\\(u=1\\\\)</span> of the Artin-Ihara <i>L</i>-function, we give a short proof of the count of the number of spanning trees in the <i>n</i>-cube.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02746-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02746-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
利用阿尔丁-伊哈拉 L 函数在 \(u=1\)处的特殊值,我们给出了 n 立方体中生成树数目的简短证明。