底栖栉水母的神经肌肉组织

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kurato Mohri, Hiroshi Watanabe
{"title":"底栖栉水母的神经肌肉组织","authors":"Kurato Mohri, Hiroshi Watanabe","doi":"10.1186/s40851-024-00225-0","DOIUrl":null,"url":null,"abstract":"Ctenophora is the earliest metazoan taxon with neurons and muscles. Recent studies have described genetic, physiological, and cellular characteristics of the neural and muscular systems of this phylogenically important lineage. However, despite the ecological diversity of ctenophore niches, including both pelagic and benthic forms, studies have focused predominantly on pelagic species. In the present study, we describe the neural and muscular architectures of the benthic ctenophore, Vallicula multiformis (Order Platyctenida), employing immunohistochemical analysis using antibodies against amidated neuropeptides with the C-terminal sequences VWYa, NPWa, FGLa, or WTGa to compare it to pelagic species. In V. multiformis, which lacks the characteristic comb rows seen in pelagic ctenophores, neural structures that develop beneath the comb were not detected, whereas the subepithelial and tentacle neural networks showed considerable similarity to those of pelagic species. Despite significant differences in morphology and lifestyle, muscle organization in V. multiformis closely resembles that of pelagic species. Detailed analysis of neurons that express these peptides unveiled a neural architecture composed of various neural subtypes. This included widely distributed subepithelial neural networks (SNNs) and neurosecretory cells located primarily in the peripheral region. The consistent distribution patterns of the VWYa-positive SNN and tentacle nerves between V. multiformis and the pelagic species, Bolinopsis mikado, suggest evolutionarily conserved function of these neurons in the Ctenophora. In contrast, NPWa-positive neurons, which extend neurites connecting the apical organ and comb rows in B. mikado, showed a neurite-less neurosecretory cell morphology in this flattened, sessile species. Evaluation of characteristics and variations in neural and muscular architectures shared by benthic and pelagic ctenophore species may yield valuable insights for unraveling the biology of this rapidly evolving yet enigmatic metazoan lineage. These findings also provide important insight into neural control modalities in early metazoan evolution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuromuscular organization of the benthic ctenophore, Vallicula multiformis\",\"authors\":\"Kurato Mohri, Hiroshi Watanabe\",\"doi\":\"10.1186/s40851-024-00225-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ctenophora is the earliest metazoan taxon with neurons and muscles. Recent studies have described genetic, physiological, and cellular characteristics of the neural and muscular systems of this phylogenically important lineage. However, despite the ecological diversity of ctenophore niches, including both pelagic and benthic forms, studies have focused predominantly on pelagic species. In the present study, we describe the neural and muscular architectures of the benthic ctenophore, Vallicula multiformis (Order Platyctenida), employing immunohistochemical analysis using antibodies against amidated neuropeptides with the C-terminal sequences VWYa, NPWa, FGLa, or WTGa to compare it to pelagic species. In V. multiformis, which lacks the characteristic comb rows seen in pelagic ctenophores, neural structures that develop beneath the comb were not detected, whereas the subepithelial and tentacle neural networks showed considerable similarity to those of pelagic species. Despite significant differences in morphology and lifestyle, muscle organization in V. multiformis closely resembles that of pelagic species. Detailed analysis of neurons that express these peptides unveiled a neural architecture composed of various neural subtypes. This included widely distributed subepithelial neural networks (SNNs) and neurosecretory cells located primarily in the peripheral region. The consistent distribution patterns of the VWYa-positive SNN and tentacle nerves between V. multiformis and the pelagic species, Bolinopsis mikado, suggest evolutionarily conserved function of these neurons in the Ctenophora. In contrast, NPWa-positive neurons, which extend neurites connecting the apical organ and comb rows in B. mikado, showed a neurite-less neurosecretory cell morphology in this flattened, sessile species. Evaluation of characteristics and variations in neural and muscular architectures shared by benthic and pelagic ctenophore species may yield valuable insights for unraveling the biology of this rapidly evolving yet enigmatic metazoan lineage. These findings also provide important insight into neural control modalities in early metazoan evolution.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40851-024-00225-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40851-024-00225-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

栉水母是最早具有神经元和肌肉的类群。最近的研究描述了这一具有重要系统发育意义的类群的神经和肌肉系统的遗传、生理和细胞特征。然而,尽管栉水母的生态位多种多样,包括浮游和底栖两种形式,但研究主要集中在浮游物种上。在本研究中,我们描述了底栖栉水母(Platyctenida目)的神经和肌肉结构,并使用针对C端序列为VWYa、NPWa、FGLa或WTGa的酰胺化神经肽的抗体进行免疫组化分析,将其与浮游物种进行比较。多形栉水母缺乏浮游栉水母特有的梳排,没有检测到在梳下发育的神经结构,而上皮下和触手神经网络与浮游物种的神经网络相当相似。尽管在形态和生活方式上存在显著差异,但多形鱼的肌肉组织与中上层物种的肌肉组织非常相似。对表达这些肽的神经元的详细分析揭示了由各种神经亚型组成的神经结构。其中包括广泛分布的上皮下神经网络(SNN)和主要位于外周区域的神经分泌细胞。VWYa阳性的上皮下神经网络和触手神经在V. multiformis和中上层物种Bolinopsis mikado之间的分布模式一致,表明这些神经元在栉水母中的功能在进化上是保守的。与此相反,NPWa 阳性神经元在 B. mikado 中延伸神经元连接顶端器官和梳排,而在这种扁平无柄物种中则表现出无神经元的神经分泌细胞形态。对底栖栉水母和浮游栉水母共同的神经和肌肉结构的特征和变化进行评估,可能会为揭示这一快速进化但又神秘莫测的后生动物门类的生物学特性提供有价值的见解。这些发现还为了解元古宙早期进化过程中的神经控制模式提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuromuscular organization of the benthic ctenophore, Vallicula multiformis
Ctenophora is the earliest metazoan taxon with neurons and muscles. Recent studies have described genetic, physiological, and cellular characteristics of the neural and muscular systems of this phylogenically important lineage. However, despite the ecological diversity of ctenophore niches, including both pelagic and benthic forms, studies have focused predominantly on pelagic species. In the present study, we describe the neural and muscular architectures of the benthic ctenophore, Vallicula multiformis (Order Platyctenida), employing immunohistochemical analysis using antibodies against amidated neuropeptides with the C-terminal sequences VWYa, NPWa, FGLa, or WTGa to compare it to pelagic species. In V. multiformis, which lacks the characteristic comb rows seen in pelagic ctenophores, neural structures that develop beneath the comb were not detected, whereas the subepithelial and tentacle neural networks showed considerable similarity to those of pelagic species. Despite significant differences in morphology and lifestyle, muscle organization in V. multiformis closely resembles that of pelagic species. Detailed analysis of neurons that express these peptides unveiled a neural architecture composed of various neural subtypes. This included widely distributed subepithelial neural networks (SNNs) and neurosecretory cells located primarily in the peripheral region. The consistent distribution patterns of the VWYa-positive SNN and tentacle nerves between V. multiformis and the pelagic species, Bolinopsis mikado, suggest evolutionarily conserved function of these neurons in the Ctenophora. In contrast, NPWa-positive neurons, which extend neurites connecting the apical organ and comb rows in B. mikado, showed a neurite-less neurosecretory cell morphology in this flattened, sessile species. Evaluation of characteristics and variations in neural and muscular architectures shared by benthic and pelagic ctenophore species may yield valuable insights for unraveling the biology of this rapidly evolving yet enigmatic metazoan lineage. These findings also provide important insight into neural control modalities in early metazoan evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信