沉浸在稳定的不可压缩粘性流体中的障碍物的识别

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
G. Yuksel, D. Lesnic
{"title":"沉浸在稳定的不可压缩粘性流体中的障碍物的识别","authors":"G. Yuksel, D. Lesnic","doi":"10.1007/s10665-023-10323-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the identification of immersed obstacles in a steady incompressible Navier–Stokes viscous fluid flow from fluid traction measurements is investigated. The solution of the direct problem is computed using the finite element method (FEM) implemented in the Freefem++ commercial software package. The solution of the inverse geometric obstacle problem (parameterized by a small set of unknown constants) is accomplished iteratively by minimizing the nonlinear least-squares functional using an adaptive moment estimation algorithm. The numerical results for the identification of an obstacle in a viscous fluid flowing in a channel with open ends, show that when the fluid traction is measured on the top, bottom and inlet boundaries, then the algorithm provides accurate and robust reconstructions of an obstacle parameterized by a small number of parameters in a Fourier trigonometric finite expansion. Stable reconstructions with respect to noise in the measured fluid traction data are also achieved, although for complicated shapes parameterized by larger degrees of freedom Tikhonov regularization of the least-squares functional may need to be employed. Multiple-component obstacles may also be identified provided that a good initial guess is provided. In case of limited data being available only at the inlet boundary the pressure gradient provides more information for inversion than the fluid traction.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"11 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The identification of obstacles immersed in a steady incompressible viscous fluid\",\"authors\":\"G. Yuksel, D. Lesnic\",\"doi\":\"10.1007/s10665-023-10323-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the identification of immersed obstacles in a steady incompressible Navier–Stokes viscous fluid flow from fluid traction measurements is investigated. The solution of the direct problem is computed using the finite element method (FEM) implemented in the Freefem++ commercial software package. The solution of the inverse geometric obstacle problem (parameterized by a small set of unknown constants) is accomplished iteratively by minimizing the nonlinear least-squares functional using an adaptive moment estimation algorithm. The numerical results for the identification of an obstacle in a viscous fluid flowing in a channel with open ends, show that when the fluid traction is measured on the top, bottom and inlet boundaries, then the algorithm provides accurate and robust reconstructions of an obstacle parameterized by a small number of parameters in a Fourier trigonometric finite expansion. Stable reconstructions with respect to noise in the measured fluid traction data are also achieved, although for complicated shapes parameterized by larger degrees of freedom Tikhonov regularization of the least-squares functional may need to be employed. Multiple-component obstacles may also be identified provided that a good initial guess is provided. In case of limited data being available only at the inlet boundary the pressure gradient provides more information for inversion than the fluid traction.</p>\",\"PeriodicalId\":50204,\"journal\":{\"name\":\"Journal of Engineering Mathematics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Mathematics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-023-10323-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-023-10323-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了根据流体牵引测量结果识别稳定不可压缩纳维-斯托克斯粘性流体流动中的沉浸障碍物。直接问题的解是用 Freefem++ 商业软件包中的有限元法(FEM)计算的。通过使用自适应矩估计算法最小化非线性最小二乘法函数,反复求解反几何障碍问题(由一小组未知常数参数化)。对在两端开口的通道中流动的粘性流体中的障碍物进行识别的数值结果表明,当在顶部、底部和入口边界测量流体牵引力时,该算法可通过傅里叶三角有限展开中的少量参数对障碍物进行精确、稳健的重构。虽然对于参数自由度较大的复杂形状,可能需要对最小二乘法函数进行提霍诺夫正则化处理,但该算法也能实现与测量流体牵引数据中的噪声有关的稳定重构。只要有一个良好的初始猜测,多分量障碍物也可以被识别出来。如果只有入口边界的有限数据,压力梯度比流体牵引力能提供更多反演信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The identification of obstacles immersed in a steady incompressible viscous fluid

The identification of obstacles immersed in a steady incompressible viscous fluid

In this paper, the identification of immersed obstacles in a steady incompressible Navier–Stokes viscous fluid flow from fluid traction measurements is investigated. The solution of the direct problem is computed using the finite element method (FEM) implemented in the Freefem++ commercial software package. The solution of the inverse geometric obstacle problem (parameterized by a small set of unknown constants) is accomplished iteratively by minimizing the nonlinear least-squares functional using an adaptive moment estimation algorithm. The numerical results for the identification of an obstacle in a viscous fluid flowing in a channel with open ends, show that when the fluid traction is measured on the top, bottom and inlet boundaries, then the algorithm provides accurate and robust reconstructions of an obstacle parameterized by a small number of parameters in a Fourier trigonometric finite expansion. Stable reconstructions with respect to noise in the measured fluid traction data are also achieved, although for complicated shapes parameterized by larger degrees of freedom Tikhonov regularization of the least-squares functional may need to be employed. Multiple-component obstacles may also be identified provided that a good initial guess is provided. In case of limited data being available only at the inlet boundary the pressure gradient provides more information for inversion than the fluid traction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineering Mathematics
Journal of Engineering Mathematics 工程技术-工程:综合
CiteScore
2.10
自引率
7.70%
发文量
44
审稿时长
6 months
期刊介绍: The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following: • Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods. • Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas. The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly. Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信