真实性与行星数量

IF 0.7 1区 哲学 0 PHILOSOPHY
Theo A. F. Kuipers
{"title":"真实性与行星数量","authors":"Theo A. F. Kuipers","doi":"10.1007/s10992-023-09739-y","DOIUrl":null,"url":null,"abstract":"<p>Examples of hypotheses about the number of planets are frequently used to introduce the topic of (actual) truthlikeness but never analyzed in detail. In this paper we first deal with the truthlikeness of singular quantity hypotheses, with reference to several ‘the number of planets’ examples, such as ‘The number of planets is 10 <i>versus</i> 10 billion (instead of 8).’ For the relevant ratio scale of quantities we will propose two, strongly related, normalized metrics, the proportional metric and the (simplest and hence favorite) fractional metric, to express e.g. the distance from a hypothetical number to the true number of planets, i.e. the distance between quantities. We argue that they are, in view of the examples and plausible conditions of adequacy, much more appropriate, than the standardly suggested, normalized absolute difference, metric.</p><p>Next we deal with disjunctive hypotheses, such as ‘The number of planets is between 7 and 10 inclusive is much more truthlike than between 1 and 10 billion inclusive.’ We compare three (clusters of) general ways of dealing with such hypotheses, one from Ilkka Niiniluoto, one from Pavel Tichý and Graham Oddie, and a trio of ways from Theo Kuipers. Using primarily the fractional metric, we conclude that all five measures can be used for expressing the distance of disjunctive hypotheses from the actual truth, that all of them have their strong and weak points, but that (the combined) one of the trio is, in view of principle and practical considerations, the most plausible measure.</p>","PeriodicalId":51526,"journal":{"name":"JOURNAL OF PHILOSOPHICAL LOGIC","volume":"28 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Truthlikeness and the Number of Planets\",\"authors\":\"Theo A. F. Kuipers\",\"doi\":\"10.1007/s10992-023-09739-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Examples of hypotheses about the number of planets are frequently used to introduce the topic of (actual) truthlikeness but never analyzed in detail. In this paper we first deal with the truthlikeness of singular quantity hypotheses, with reference to several ‘the number of planets’ examples, such as ‘The number of planets is 10 <i>versus</i> 10 billion (instead of 8).’ For the relevant ratio scale of quantities we will propose two, strongly related, normalized metrics, the proportional metric and the (simplest and hence favorite) fractional metric, to express e.g. the distance from a hypothetical number to the true number of planets, i.e. the distance between quantities. We argue that they are, in view of the examples and plausible conditions of adequacy, much more appropriate, than the standardly suggested, normalized absolute difference, metric.</p><p>Next we deal with disjunctive hypotheses, such as ‘The number of planets is between 7 and 10 inclusive is much more truthlike than between 1 and 10 billion inclusive.’ We compare three (clusters of) general ways of dealing with such hypotheses, one from Ilkka Niiniluoto, one from Pavel Tichý and Graham Oddie, and a trio of ways from Theo Kuipers. Using primarily the fractional metric, we conclude that all five measures can be used for expressing the distance of disjunctive hypotheses from the actual truth, that all of them have their strong and weak points, but that (the combined) one of the trio is, in view of principle and practical considerations, the most plausible measure.</p>\",\"PeriodicalId\":51526,\"journal\":{\"name\":\"JOURNAL OF PHILOSOPHICAL LOGIC\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF PHILOSOPHICAL LOGIC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10992-023-09739-y\",\"RegionNum\":1,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"PHILOSOPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF PHILOSOPHICAL LOGIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10992-023-09739-y","RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 0

摘要

关于行星数量假设的例子经常被用来引入(实际)真假性的话题,但从未被详细分析过。在本文中,我们将首先参考几个 "行星数量 "的例子,如 "行星数量是 10 对 100 亿(而不是 8)",来讨论奇异数量假设的真假性。对于相关的量比尺度,我们将提出两个密切相关的归一化度量,即比例度量和(最简单因而也是最受欢迎的)分数度量,来表达例如从一个假设的数到真正的行星数之间的距离,即量与量之间的距离。我们认为,从实例和可信的适当性条件来看,它们比标准建议的归一化绝对差值度量法要合适得多。接下来,我们将讨论不连续的假设,如'行星数量在 7 到 10(含)之间比在 10 到 100 亿(含)之间更接近真相'。我们比较了处理这类假设的三种(组)一般方法,一种来自伊尔卡-尼尼洛托(Ilkka Niiniluoto),一种来自帕维尔-蒂奇(Pavel Tichý)和格雷厄姆-奥迪(Graham Oddie),还有一种来自提奥-库珀斯(Theo Kuipers)。我们主要使用分数度量法得出结论:所有五种度量法都可以用来表示不连贯假说与实际真相之间的距离,所有度量法都有其优点和缺点,但从原则和实际考虑来看,三重奏中的(组合)一种度量法是最合理的度量法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Truthlikeness and the Number of Planets

Examples of hypotheses about the number of planets are frequently used to introduce the topic of (actual) truthlikeness but never analyzed in detail. In this paper we first deal with the truthlikeness of singular quantity hypotheses, with reference to several ‘the number of planets’ examples, such as ‘The number of planets is 10 versus 10 billion (instead of 8).’ For the relevant ratio scale of quantities we will propose two, strongly related, normalized metrics, the proportional metric and the (simplest and hence favorite) fractional metric, to express e.g. the distance from a hypothetical number to the true number of planets, i.e. the distance between quantities. We argue that they are, in view of the examples and plausible conditions of adequacy, much more appropriate, than the standardly suggested, normalized absolute difference, metric.

Next we deal with disjunctive hypotheses, such as ‘The number of planets is between 7 and 10 inclusive is much more truthlike than between 1 and 10 billion inclusive.’ We compare three (clusters of) general ways of dealing with such hypotheses, one from Ilkka Niiniluoto, one from Pavel Tichý and Graham Oddie, and a trio of ways from Theo Kuipers. Using primarily the fractional metric, we conclude that all five measures can be used for expressing the distance of disjunctive hypotheses from the actual truth, that all of them have their strong and weak points, but that (the combined) one of the trio is, in view of principle and practical considerations, the most plausible measure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
20.00%
发文量
43
期刊介绍: The Journal of Philosophical Logic aims to provide a forum for work at the crossroads of philosophy and logic, old and new, with contributions ranging from conceptual to technical.  Accordingly, the Journal invites papers in all of the traditional areas of philosophical logic, including but not limited to: various versions of modal, temporal, epistemic, and deontic logic; constructive logics; relevance and other sub-classical logics; many-valued logics; logics of conditionals; quantum logic; decision theory, inductive logic, logics of belief change, and formal epistemology; defeasible and nonmonotonic logics; formal philosophy of language; vagueness; and theories of truth and validity. In addition to publishing papers on philosophical logic in this familiar sense of the term, the Journal also invites papers on extensions of logic to new areas of application, and on the philosophical issues to which these give rise. The Journal places a special emphasis on the applications of philosophical logic in other disciplines, not only in mathematics and the natural sciences but also, for example, in computer science, artificial intelligence, cognitive science, linguistics, jurisprudence, and the social sciences, such as economics, sociology, and political science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信