希钦基地上的西伯格-威滕差速器

Ugo Bruzzo, Peter Dalakov
{"title":"希钦基地上的西伯格-威滕差速器","authors":"Ugo Bruzzo, Peter Dalakov","doi":"10.1007/s13398-024-01551-w","DOIUrl":null,"url":null,"abstract":"<p>In this note we describe explicitly, in terms of Lie theory and cameral data, the covariant (Gauss–Manin) derivative of the Seiberg–Witten differential defined on the weight-one variation of Hodge structures that exists on a Zariski open subset of the base of the Hitchin fibration.</p>","PeriodicalId":21293,"journal":{"name":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seiberg–Witten differentials on the Hitchin base\",\"authors\":\"Ugo Bruzzo, Peter Dalakov\",\"doi\":\"10.1007/s13398-024-01551-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note we describe explicitly, in terms of Lie theory and cameral data, the covariant (Gauss–Manin) derivative of the Seiberg–Witten differential defined on the weight-one variation of Hodge structures that exists on a Zariski open subset of the base of the Hitchin fibration.</p>\",\"PeriodicalId\":21293,\"journal\":{\"name\":\"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13398-024-01551-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13398-024-01551-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇论文中,我们用李理论和凸轮数据明确描述了定义在霍奇结构的权一变体上的塞伯格-维滕微分的协变(高斯-马宁)导数,这个权一变体存在于希钦纤维基的扎里斯基开放子集上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seiberg–Witten differentials on the Hitchin base

In this note we describe explicitly, in terms of Lie theory and cameral data, the covariant (Gauss–Manin) derivative of the Seiberg–Witten differential defined on the weight-one variation of Hodge structures that exists on a Zariski open subset of the base of the Hitchin fibration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信