{"title":"积分里奇曲率约束下非线性抛物方程的微分梯度估计","authors":"Shahroud Azami","doi":"10.1007/s13398-024-01552-9","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\((M^{n},g)\\)</span> be a complete Riemannian manifold. We prove a space-time gradient estimates for positive solutions of nonlinear parabolic equations </p><span>$$\\begin{aligned} \\partial _{t}u(x,t)=\\Delta u(x,t)-p(x,t)A(u(x,t))-q(x,t) ( u(x,t))^{a+1}, \\end{aligned}$$</span><p>on geodesic balls <i>B</i>(<i>o</i>, <i>r</i>) in <i>M</i> with <span>\\(0<r\\le 1\\)</span> for <span>\\(s>\\frac{n}{2}\\)</span> when integral Ricci curvature <i>k</i>(<i>p</i>, 1) is small enough. By integrating the gradient estimates in space-time we derive the corresponding Harnack inequalities.</p>","PeriodicalId":21293,"journal":{"name":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","volume":"134 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential gradient estimates for nonlinear parabolic equations under integral Ricci curvature bounds\",\"authors\":\"Shahroud Azami\",\"doi\":\"10.1007/s13398-024-01552-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\((M^{n},g)\\\\)</span> be a complete Riemannian manifold. We prove a space-time gradient estimates for positive solutions of nonlinear parabolic equations </p><span>$$\\\\begin{aligned} \\\\partial _{t}u(x,t)=\\\\Delta u(x,t)-p(x,t)A(u(x,t))-q(x,t) ( u(x,t))^{a+1}, \\\\end{aligned}$$</span><p>on geodesic balls <i>B</i>(<i>o</i>, <i>r</i>) in <i>M</i> with <span>\\\\(0<r\\\\le 1\\\\)</span> for <span>\\\\(s>\\\\frac{n}{2}\\\\)</span> when integral Ricci curvature <i>k</i>(<i>p</i>, 1) is small enough. By integrating the gradient estimates in space-time we derive the corresponding Harnack inequalities.</p>\",\"PeriodicalId\":21293,\"journal\":{\"name\":\"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas\",\"volume\":\"134 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13398-024-01552-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13398-024-01552-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让((M^{n},g))是一个完整的黎曼流形。我们证明了非线性抛物方程正解的时空梯度估计 $$\begin{aligned}\partial _{t}u(x,t)=\Delta u(x,t)-p(x,t)A(u(x,t))-q(x,t) ( u(x,t))^{a+1}, \end{aligned}$$ on geodesic balls B(o, r) in M with \(0<;当积分里奇曲率k(p, 1)足够小时,为(s>\frac{n}{2}\)。通过对梯度估计的时空积分,我们得出了相应的哈纳克不等式。
on geodesic balls B(o, r) in M with \(0<r\le 1\) for \(s>\frac{n}{2}\) when integral Ricci curvature k(p, 1) is small enough. By integrating the gradient estimates in space-time we derive the corresponding Harnack inequalities.