{"title":"球面上标量平面度量的山边奇异问题","authors":"Aram L. Karakhanyan","doi":"10.1007/s00229-023-01527-x","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\Omega \\)</span> be a domain on the unit <i>n</i>-sphere <span>\\( {\\mathbb {S}}^n\\)</span> and <span>\\( \\overset{{\\,}_\\circ }{g}\\)</span> the standard metric of <span>\\({\\mathbb {S}}^n\\)</span>, <span>\\(n\\ge 3\\)</span>. We show that there exists a conformal metric <i>g</i> with vanishing scalar curvature <span>\\(R(g)=0\\)</span> such that <span>\\((\\Omega , g)\\)</span> is complete if and only if the Bessel capacity <span>\\({\\mathcal {C}}_{\\alpha , q}({\\mathbb {S}}^n\\setminus \\Omega )=0\\)</span>, where <span>\\(\\alpha =1+\\frac{2}{n}\\)</span> and <span>\\(q=\\frac{n}{2}\\)</span>. Our analysis utilizes some well known properties of capacity and Wolff potentials, as well as a version of the Hopf–Rinow theorem for the divergent curves.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular Yamabe problem for scalar flat metrics on the sphere\",\"authors\":\"Aram L. Karakhanyan\",\"doi\":\"10.1007/s00229-023-01527-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\Omega \\\\)</span> be a domain on the unit <i>n</i>-sphere <span>\\\\( {\\\\mathbb {S}}^n\\\\)</span> and <span>\\\\( \\\\overset{{\\\\,}_\\\\circ }{g}\\\\)</span> the standard metric of <span>\\\\({\\\\mathbb {S}}^n\\\\)</span>, <span>\\\\(n\\\\ge 3\\\\)</span>. We show that there exists a conformal metric <i>g</i> with vanishing scalar curvature <span>\\\\(R(g)=0\\\\)</span> such that <span>\\\\((\\\\Omega , g)\\\\)</span> is complete if and only if the Bessel capacity <span>\\\\({\\\\mathcal {C}}_{\\\\alpha , q}({\\\\mathbb {S}}^n\\\\setminus \\\\Omega )=0\\\\)</span>, where <span>\\\\(\\\\alpha =1+\\\\frac{2}{n}\\\\)</span> and <span>\\\\(q=\\\\frac{n}{2}\\\\)</span>. Our analysis utilizes some well known properties of capacity and Wolff potentials, as well as a version of the Hopf–Rinow theorem for the divergent curves.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-023-01527-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-023-01527-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Singular Yamabe problem for scalar flat metrics on the sphere
Let \(\Omega \) be a domain on the unit n-sphere \( {\mathbb {S}}^n\) and \( \overset{{\,}_\circ }{g}\) the standard metric of \({\mathbb {S}}^n\), \(n\ge 3\). We show that there exists a conformal metric g with vanishing scalar curvature \(R(g)=0\) such that \((\Omega , g)\) is complete if and only if the Bessel capacity \({\mathcal {C}}_{\alpha , q}({\mathbb {S}}^n\setminus \Omega )=0\), where \(\alpha =1+\frac{2}{n}\) and \(q=\frac{n}{2}\). Our analysis utilizes some well known properties of capacity and Wolff potentials, as well as a version of the Hopf–Rinow theorem for the divergent curves.