{"title":"具有二次和三次非线性的卡马萨-霍姆型方程在加权$L^p$$$空间中的破波和持久特性","authors":"Wenguang Cheng, Ji Lin","doi":"10.1007/s00605-023-01938-8","DOIUrl":null,"url":null,"abstract":"<p>We consider the Cauchy problem of a Camassa–Holm type equation with quadratic and cubic nonlinearities. We establish a new sufficient condition on the initial data that leads to the wave-breaking for this equation. Moreover, we obtain the persistence results of solutions for the equation in weighted <span>\\(L^p\\)</span> spaces.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"215 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave-breaking and persistence properties in weighted $$L^p$$ spaces for a Camassa–Holm type equation with quadratic and cubic nonlinearities\",\"authors\":\"Wenguang Cheng, Ji Lin\",\"doi\":\"10.1007/s00605-023-01938-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the Cauchy problem of a Camassa–Holm type equation with quadratic and cubic nonlinearities. We establish a new sufficient condition on the initial data that leads to the wave-breaking for this equation. Moreover, we obtain the persistence results of solutions for the equation in weighted <span>\\\\(L^p\\\\)</span> spaces.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"215 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-023-01938-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01938-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wave-breaking and persistence properties in weighted $$L^p$$ spaces for a Camassa–Holm type equation with quadratic and cubic nonlinearities
We consider the Cauchy problem of a Camassa–Holm type equation with quadratic and cubic nonlinearities. We establish a new sufficient condition on the initial data that leads to the wave-breaking for this equation. Moreover, we obtain the persistence results of solutions for the equation in weighted \(L^p\) spaces.