Bongseok Kim , Hyekyung Cho , Yuwon Jeon , Seunghyun Chun , Bolormaa Bayarkhuu , Jeehye Byun , Hyosun Lee
{"title":"低负载钯纳米催化剂在光助铃木偶联反应中的固定化支撑作用","authors":"Bongseok Kim , Hyekyung Cho , Yuwon Jeon , Seunghyun Chun , Bolormaa Bayarkhuu , Jeehye Byun , Hyosun Lee","doi":"10.1016/j.catcom.2024.106856","DOIUrl":null,"url":null,"abstract":"<div><p>This work investigates the impact of immobilization supports on the performance of Pd nanocatalysts in light-induced Suzuki coupling reactions by utilizing two model supports, mesoporous silica (SBA-15) and covalent triazine framework (CTF-Ph). Despite comparable Pd loading (0.3–0.5 wt%) and chemical states, under visible light illumination, Pd/CTF-Ph demonstrated a remarkable 40% reduction in activation energy, outperforming the 16% decrease observed with Pd/SBA-15. This superior performance is attributed to the light-absorbing properties of CTF-Ph and its facilitated pi-pi interaction toward reagents on the catalyst surface. Our findings offer valuable insights into the development of effective catalysts for light-assisted C<img>C bond formation reactions.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":"187 ","pages":"Article 106856"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566736724000165/pdfft?md5=878587ad94d8323836f1fae3a93590ed&pid=1-s2.0-S1566736724000165-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The role of immobilization supports for light-assisted Suzuki coupling reaction with low-loading Pd nanocatalyst\",\"authors\":\"Bongseok Kim , Hyekyung Cho , Yuwon Jeon , Seunghyun Chun , Bolormaa Bayarkhuu , Jeehye Byun , Hyosun Lee\",\"doi\":\"10.1016/j.catcom.2024.106856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work investigates the impact of immobilization supports on the performance of Pd nanocatalysts in light-induced Suzuki coupling reactions by utilizing two model supports, mesoporous silica (SBA-15) and covalent triazine framework (CTF-Ph). Despite comparable Pd loading (0.3–0.5 wt%) and chemical states, under visible light illumination, Pd/CTF-Ph demonstrated a remarkable 40% reduction in activation energy, outperforming the 16% decrease observed with Pd/SBA-15. This superior performance is attributed to the light-absorbing properties of CTF-Ph and its facilitated pi-pi interaction toward reagents on the catalyst surface. Our findings offer valuable insights into the development of effective catalysts for light-assisted C<img>C bond formation reactions.</p></div>\",\"PeriodicalId\":263,\"journal\":{\"name\":\"Catalysis Communications\",\"volume\":\"187 \",\"pages\":\"Article 106856\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1566736724000165/pdfft?md5=878587ad94d8323836f1fae3a93590ed&pid=1-s2.0-S1566736724000165-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566736724000165\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566736724000165","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The role of immobilization supports for light-assisted Suzuki coupling reaction with low-loading Pd nanocatalyst
This work investigates the impact of immobilization supports on the performance of Pd nanocatalysts in light-induced Suzuki coupling reactions by utilizing two model supports, mesoporous silica (SBA-15) and covalent triazine framework (CTF-Ph). Despite comparable Pd loading (0.3–0.5 wt%) and chemical states, under visible light illumination, Pd/CTF-Ph demonstrated a remarkable 40% reduction in activation energy, outperforming the 16% decrease observed with Pd/SBA-15. This superior performance is attributed to the light-absorbing properties of CTF-Ph and its facilitated pi-pi interaction toward reagents on the catalyst surface. Our findings offer valuable insights into the development of effective catalysts for light-assisted CC bond formation reactions.
期刊介绍:
Catalysis Communications aims to provide rapid publication of significant, novel, and timely research results homogeneous, heterogeneous, and enzymatic catalysis.