André Hadad, Victor L B França, Marcos William Crisostomo, Kellen Brunaldi, Hernandes F Carvalho, Valder N Freire
{"title":"揭示果糖和葡萄糖与人类血清白蛋白的结合:荧光测量和对接、分子动力学和量子生物化学计算。","authors":"André Hadad, Victor L B França, Marcos William Crisostomo, Kellen Brunaldi, Hernandes F Carvalho, Valder N Freire","doi":"10.1080/07391102.2024.2310211","DOIUrl":null,"url":null,"abstract":"<p><p>This research examines the interaction between human serum albumin (HSA) and various sugar forms (β-D-fructofuranose (FRC), α-D-glucopyranose (GLC), Keto-D-fructose (FRO), Aldehydo-D-glucose (GLO), and modified Aldehydo-D-glucose (GLOm)) using fluorescent spectroscopy, molecular docking simulations, molecular dynamics, protein conformational clusters (EnGens), molecular fractionation with conjugate caps (MFCC) and quantum biochemistry analysis. We analyze molecular and quantum aspects, uncovering interaction energies between sugar atoms and amino acids. Total interaction energy considers protein fragmentation, energetic decomposition, and interaction energy from a bottom-up perspective. Molecular dynamics reveal that unmodified Aldehydo-D-glucose (GLO) escapes HSA binding sites, explaining gradual glycation. We pioneer studying HSA's binding mechanism with glucose and fructose in a 1:1 ratio using long molecular dynamics simulations. Results suggest the transitional GLOm form has a higher Sudlow I site propensity than unmodified glucose, crucial for K195 glycation. FRO and GLOm interaction tendencies move toward a deeper FA7 cavity, near its center. This approach effectively elucidates small molecule binding mechanisms, consistent with previous experimental results.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"6770-6790"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling fructose and glucose binding to human serum albumin: fluorescence measurements and docking, molecular dynamics and quantum biochemistry computations.\",\"authors\":\"André Hadad, Victor L B França, Marcos William Crisostomo, Kellen Brunaldi, Hernandes F Carvalho, Valder N Freire\",\"doi\":\"10.1080/07391102.2024.2310211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research examines the interaction between human serum albumin (HSA) and various sugar forms (β-D-fructofuranose (FRC), α-D-glucopyranose (GLC), Keto-D-fructose (FRO), Aldehydo-D-glucose (GLO), and modified Aldehydo-D-glucose (GLOm)) using fluorescent spectroscopy, molecular docking simulations, molecular dynamics, protein conformational clusters (EnGens), molecular fractionation with conjugate caps (MFCC) and quantum biochemistry analysis. We analyze molecular and quantum aspects, uncovering interaction energies between sugar atoms and amino acids. Total interaction energy considers protein fragmentation, energetic decomposition, and interaction energy from a bottom-up perspective. Molecular dynamics reveal that unmodified Aldehydo-D-glucose (GLO) escapes HSA binding sites, explaining gradual glycation. We pioneer studying HSA's binding mechanism with glucose and fructose in a 1:1 ratio using long molecular dynamics simulations. Results suggest the transitional GLOm form has a higher Sudlow I site propensity than unmodified glucose, crucial for K195 glycation. FRO and GLOm interaction tendencies move toward a deeper FA7 cavity, near its center. This approach effectively elucidates small molecule binding mechanisms, consistent with previous experimental results.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"6770-6790\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2024.2310211\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2310211","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Unveiling fructose and glucose binding to human serum albumin: fluorescence measurements and docking, molecular dynamics and quantum biochemistry computations.
This research examines the interaction between human serum albumin (HSA) and various sugar forms (β-D-fructofuranose (FRC), α-D-glucopyranose (GLC), Keto-D-fructose (FRO), Aldehydo-D-glucose (GLO), and modified Aldehydo-D-glucose (GLOm)) using fluorescent spectroscopy, molecular docking simulations, molecular dynamics, protein conformational clusters (EnGens), molecular fractionation with conjugate caps (MFCC) and quantum biochemistry analysis. We analyze molecular and quantum aspects, uncovering interaction energies between sugar atoms and amino acids. Total interaction energy considers protein fragmentation, energetic decomposition, and interaction energy from a bottom-up perspective. Molecular dynamics reveal that unmodified Aldehydo-D-glucose (GLO) escapes HSA binding sites, explaining gradual glycation. We pioneer studying HSA's binding mechanism with glucose and fructose in a 1:1 ratio using long molecular dynamics simulations. Results suggest the transitional GLOm form has a higher Sudlow I site propensity than unmodified glucose, crucial for K195 glycation. FRO and GLOm interaction tendencies move toward a deeper FA7 cavity, near its center. This approach effectively elucidates small molecule binding mechanisms, consistent with previous experimental results.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.